Vascular endothelial growth factor (VEGF) increases production, migration and survival of neural stem cells during hypoxia and ischemia

Hugo H. Marti, Katja Bieber, Yaoming Wang, Kunlin Jin, David A. Greenberg

Research output: Contribution to journalArticle

Abstract

Background and aims: Neurons are susceptible to hypoxia and ischemia. However, endogenous adaptive responses aim at protecting the tissue from hypoxic-ischemic injury. Angiogenesis and neuroprotection are two such adaptive responses, and both processes seem to be governed by the same hypoxia-induced growth factors, of which vascular endothelial growth factor (VEGF) is a prominent example. VEGF is upregulated during hypoxia and ischemia and improves outcome after stroke. New neurons are generated continuously in the subventricular zone (SVZ) and dentate gyrus of the adult brain. Neuropathological processes, including cerebral ischemia, can enhance neurogenesis, as can growth factors and other physiological stimuli. VEGF has been implicated in the hypoxia-induced regulation of neural stem cells (NSC), but it is unknown whether VEGF can enhance migration of newborn neurons toward sites of ischemic injury, where they might be able to replace neurons that undergo ischemic death. Methods: We previously generated transgenic mice, overexpressing human VEGF165 under the neuron-specific enolase promoter (V1 mice) [1-3]. V1 mice were subjected to middle cerebral artery occlusion (MCAO). Cell proliferation and neurogenesis were assessed with bromodeoxyuridine (Brdu) labeling and immunostaining for cell type-specific markers. Effects of VEGF on differentiation, proliferation and apoptosis of isolated NSC were analyzed in vitro. Results: In V1 mice, brains examined 7-28 days after MCAO showed markedly increased SVZ neurogenesis, chains of neuroblasts extending from the SVZ to the peri-infarct cortex, and an increase in the number of newly generated cortical neurons at 14-28 days after ischemia. In concert with these effects, VEGF overexpression reduced infarct volume and improved postischemic motor function. NSC isolated from the SVZ zone of V1 mice expressed more VEGF and differentiated faster into more mature neuronal cells. Furthermore, VEGF overexpression promoted NSC survival and proliferation under hypoxic conditions and protected NSC from apoptosis, induced by growth factor depletion. Finally, V1 NSC showed an increased phosphorylation of p44/42 MAP kinase and Akt, accompanied by reduced apoptosis under hypoxic conditions which was reversed when the PI3-kinase/Akt pathway was blocked by Wortmannin. Conclusions: Our results indicate VEGF as a trophic factor for neurogenesis and neuromigration in the adult brain after cerebral ischemia in vivo and for NSC in vitro involving an Akt/PI3-kinase dependent mechanism. Our data suggest that in addition to its neuroprotective effects, which are associated with improved outcome in the acute phase after cerebral ischemia, VEGF enhances postischemic neurogenesis, which could provide a therapeutic target for more chronic brain repair.

Original languageEnglish
JournalJournal of Cerebral Blood Flow and Metabolism
Volume27
Issue numberSUPPL. 1
StatePublished - 13 Nov 2007

Fingerprint

Cell Hypoxia
Neural Stem Cells
Vascular Endothelial Growth Factor A
Ischemia
Neurogenesis
Lateral Ventricles
Neurons
Brain Ischemia
Intercellular Signaling Peptides and Proteins
Middle Cerebral Artery Infarction
Brain
Apoptosis
Phosphatidylinositol 3-Kinases
Cell Proliferation
Phosphopyruvate Hydratase
Dentate Gyrus
Wounds and Injuries
Neuroprotective Agents
Bromodeoxyuridine
Transgenic Mice

Cite this

@article{5c325dccaa8d41c3984341fdff00e266,
title = "Vascular endothelial growth factor (VEGF) increases production, migration and survival of neural stem cells during hypoxia and ischemia",
abstract = "Background and aims: Neurons are susceptible to hypoxia and ischemia. However, endogenous adaptive responses aim at protecting the tissue from hypoxic-ischemic injury. Angiogenesis and neuroprotection are two such adaptive responses, and both processes seem to be governed by the same hypoxia-induced growth factors, of which vascular endothelial growth factor (VEGF) is a prominent example. VEGF is upregulated during hypoxia and ischemia and improves outcome after stroke. New neurons are generated continuously in the subventricular zone (SVZ) and dentate gyrus of the adult brain. Neuropathological processes, including cerebral ischemia, can enhance neurogenesis, as can growth factors and other physiological stimuli. VEGF has been implicated in the hypoxia-induced regulation of neural stem cells (NSC), but it is unknown whether VEGF can enhance migration of newborn neurons toward sites of ischemic injury, where they might be able to replace neurons that undergo ischemic death. Methods: We previously generated transgenic mice, overexpressing human VEGF165 under the neuron-specific enolase promoter (V1 mice) [1-3]. V1 mice were subjected to middle cerebral artery occlusion (MCAO). Cell proliferation and neurogenesis were assessed with bromodeoxyuridine (Brdu) labeling and immunostaining for cell type-specific markers. Effects of VEGF on differentiation, proliferation and apoptosis of isolated NSC were analyzed in vitro. Results: In V1 mice, brains examined 7-28 days after MCAO showed markedly increased SVZ neurogenesis, chains of neuroblasts extending from the SVZ to the peri-infarct cortex, and an increase in the number of newly generated cortical neurons at 14-28 days after ischemia. In concert with these effects, VEGF overexpression reduced infarct volume and improved postischemic motor function. NSC isolated from the SVZ zone of V1 mice expressed more VEGF and differentiated faster into more mature neuronal cells. Furthermore, VEGF overexpression promoted NSC survival and proliferation under hypoxic conditions and protected NSC from apoptosis, induced by growth factor depletion. Finally, V1 NSC showed an increased phosphorylation of p44/42 MAP kinase and Akt, accompanied by reduced apoptosis under hypoxic conditions which was reversed when the PI3-kinase/Akt pathway was blocked by Wortmannin. Conclusions: Our results indicate VEGF as a trophic factor for neurogenesis and neuromigration in the adult brain after cerebral ischemia in vivo and for NSC in vitro involving an Akt/PI3-kinase dependent mechanism. Our data suggest that in addition to its neuroprotective effects, which are associated with improved outcome in the acute phase after cerebral ischemia, VEGF enhances postischemic neurogenesis, which could provide a therapeutic target for more chronic brain repair.",
author = "Marti, {Hugo H.} and Katja Bieber and Yaoming Wang and Kunlin Jin and Greenberg, {David A.}",
year = "2007",
month = "11",
day = "13",
language = "English",
volume = "27",
journal = "Journal of Cerebral Blood Flow and Metabolism",
issn = "0271-678X",
publisher = "SAGE Publications Inc.",
number = "SUPPL. 1",

}

Vascular endothelial growth factor (VEGF) increases production, migration and survival of neural stem cells during hypoxia and ischemia. / Marti, Hugo H.; Bieber, Katja; Wang, Yaoming; Jin, Kunlin; Greenberg, David A.

In: Journal of Cerebral Blood Flow and Metabolism, Vol. 27, No. SUPPL. 1, 13.11.2007.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Vascular endothelial growth factor (VEGF) increases production, migration and survival of neural stem cells during hypoxia and ischemia

AU - Marti, Hugo H.

AU - Bieber, Katja

AU - Wang, Yaoming

AU - Jin, Kunlin

AU - Greenberg, David A.

PY - 2007/11/13

Y1 - 2007/11/13

N2 - Background and aims: Neurons are susceptible to hypoxia and ischemia. However, endogenous adaptive responses aim at protecting the tissue from hypoxic-ischemic injury. Angiogenesis and neuroprotection are two such adaptive responses, and both processes seem to be governed by the same hypoxia-induced growth factors, of which vascular endothelial growth factor (VEGF) is a prominent example. VEGF is upregulated during hypoxia and ischemia and improves outcome after stroke. New neurons are generated continuously in the subventricular zone (SVZ) and dentate gyrus of the adult brain. Neuropathological processes, including cerebral ischemia, can enhance neurogenesis, as can growth factors and other physiological stimuli. VEGF has been implicated in the hypoxia-induced regulation of neural stem cells (NSC), but it is unknown whether VEGF can enhance migration of newborn neurons toward sites of ischemic injury, where they might be able to replace neurons that undergo ischemic death. Methods: We previously generated transgenic mice, overexpressing human VEGF165 under the neuron-specific enolase promoter (V1 mice) [1-3]. V1 mice were subjected to middle cerebral artery occlusion (MCAO). Cell proliferation and neurogenesis were assessed with bromodeoxyuridine (Brdu) labeling and immunostaining for cell type-specific markers. Effects of VEGF on differentiation, proliferation and apoptosis of isolated NSC were analyzed in vitro. Results: In V1 mice, brains examined 7-28 days after MCAO showed markedly increased SVZ neurogenesis, chains of neuroblasts extending from the SVZ to the peri-infarct cortex, and an increase in the number of newly generated cortical neurons at 14-28 days after ischemia. In concert with these effects, VEGF overexpression reduced infarct volume and improved postischemic motor function. NSC isolated from the SVZ zone of V1 mice expressed more VEGF and differentiated faster into more mature neuronal cells. Furthermore, VEGF overexpression promoted NSC survival and proliferation under hypoxic conditions and protected NSC from apoptosis, induced by growth factor depletion. Finally, V1 NSC showed an increased phosphorylation of p44/42 MAP kinase and Akt, accompanied by reduced apoptosis under hypoxic conditions which was reversed when the PI3-kinase/Akt pathway was blocked by Wortmannin. Conclusions: Our results indicate VEGF as a trophic factor for neurogenesis and neuromigration in the adult brain after cerebral ischemia in vivo and for NSC in vitro involving an Akt/PI3-kinase dependent mechanism. Our data suggest that in addition to its neuroprotective effects, which are associated with improved outcome in the acute phase after cerebral ischemia, VEGF enhances postischemic neurogenesis, which could provide a therapeutic target for more chronic brain repair.

AB - Background and aims: Neurons are susceptible to hypoxia and ischemia. However, endogenous adaptive responses aim at protecting the tissue from hypoxic-ischemic injury. Angiogenesis and neuroprotection are two such adaptive responses, and both processes seem to be governed by the same hypoxia-induced growth factors, of which vascular endothelial growth factor (VEGF) is a prominent example. VEGF is upregulated during hypoxia and ischemia and improves outcome after stroke. New neurons are generated continuously in the subventricular zone (SVZ) and dentate gyrus of the adult brain. Neuropathological processes, including cerebral ischemia, can enhance neurogenesis, as can growth factors and other physiological stimuli. VEGF has been implicated in the hypoxia-induced regulation of neural stem cells (NSC), but it is unknown whether VEGF can enhance migration of newborn neurons toward sites of ischemic injury, where they might be able to replace neurons that undergo ischemic death. Methods: We previously generated transgenic mice, overexpressing human VEGF165 under the neuron-specific enolase promoter (V1 mice) [1-3]. V1 mice were subjected to middle cerebral artery occlusion (MCAO). Cell proliferation and neurogenesis were assessed with bromodeoxyuridine (Brdu) labeling and immunostaining for cell type-specific markers. Effects of VEGF on differentiation, proliferation and apoptosis of isolated NSC were analyzed in vitro. Results: In V1 mice, brains examined 7-28 days after MCAO showed markedly increased SVZ neurogenesis, chains of neuroblasts extending from the SVZ to the peri-infarct cortex, and an increase in the number of newly generated cortical neurons at 14-28 days after ischemia. In concert with these effects, VEGF overexpression reduced infarct volume and improved postischemic motor function. NSC isolated from the SVZ zone of V1 mice expressed more VEGF and differentiated faster into more mature neuronal cells. Furthermore, VEGF overexpression promoted NSC survival and proliferation under hypoxic conditions and protected NSC from apoptosis, induced by growth factor depletion. Finally, V1 NSC showed an increased phosphorylation of p44/42 MAP kinase and Akt, accompanied by reduced apoptosis under hypoxic conditions which was reversed when the PI3-kinase/Akt pathway was blocked by Wortmannin. Conclusions: Our results indicate VEGF as a trophic factor for neurogenesis and neuromigration in the adult brain after cerebral ischemia in vivo and for NSC in vitro involving an Akt/PI3-kinase dependent mechanism. Our data suggest that in addition to its neuroprotective effects, which are associated with improved outcome in the acute phase after cerebral ischemia, VEGF enhances postischemic neurogenesis, which could provide a therapeutic target for more chronic brain repair.

UR - http://www.scopus.com/inward/record.url?scp=36348994798&partnerID=8YFLogxK

M3 - Article

AN - SCOPUS:36348994798

VL - 27

JO - Journal of Cerebral Blood Flow and Metabolism

JF - Journal of Cerebral Blood Flow and Metabolism

SN - 0271-678X

IS - SUPPL. 1

ER -