Unique structural and nucleotide exchange features of the Rho1 GTPase of Entamoeba histolytica

Dustin E. Bosch, Erika S. Wittchen, Connie Qiu, Keith Burridge, David P. Siderovski

Research output: Contribution to journalArticlepeer-review

16 Scopus citations


The single-celled human parasite Entamoeba histolytica possesses a dynamic actin cytoskeleton vital for its intestinal and systemic pathogenicity. The E. histolytica genome encodes several Rho family GTPases known to regulate cytoskeletal dynamics. EhRho1, the first family member identified, was reported to be insensitive to the Rho GTPase-specific Clostridium botulinum C3 exoenzyme, raising the possibility that itmaybe a misclassified Ras family member. Here, were port the crystal structures of EhRho1 in both active and inactive states. EhRho1 is activated by a conserved switch mechanism, but diverges from mammalian Rho GTPases in lacking a signature Rho insert helix. EhRho1 engages a homolog of mDia, EhFormin1, suggesting a role in mediating serum-stimulated actin reorganization and microtubule formation during mitosis. EhRho1, but not a constitutively active mutant, interacts with a newly identified EhRhoGDI in a prenylation-dependent manner. Furthermore, constitutively active EhRho1 induces actin stress fiber formation in mammalian fibroblasts, thereby identifying it as a functional Rho family GTPase. EhRho1 exhibits a fast rate of nucleotide exchange relative to mammalian Rho GTPases due to a distinctive switch one isoleucine residue reminiscent of the constitutively active F28L mutation in human Cdc42, which for the latter protein, is sufficient for cellular transformation. Nonconserved, nucleotide-interacting residues within EhRho1, revealed by the crystal structure models, were observed to contribute a moderating influence on fast spontaneous nucleotide exchange. Collectively, these observations indicate that EhRho1 is a bona fide member of the Rho GTPase family, albeit with unique structural and functional aspects compared with mammalian Rho GTPases.

Original languageEnglish
Pages (from-to)39236-39246
Number of pages11
JournalJournal of Biological Chemistry
Issue number45
StatePublished - 11 Nov 2011


Dive into the research topics of 'Unique structural and nucleotide exchange features of the Rho1 GTPase of Entamoeba histolytica'. Together they form a unique fingerprint.

Cite this