Two-week normobaric intermittent hypoxia exposures enhance oxyhemoglobin equilibrium and cardiac responses during hypoxemia

Peizhen Zhang, H. Fred Downey, Shande Chen, Xiangrong Shi

Research output: Contribution to journalArticleResearchpeer-review

6 Citations (Scopus)

Abstract

Intermittent hypoxia (IH) is extensively applied to challenge cardiovascular and respiratory function, and to induce physiological acclimatization. The purpose of this study was to test the hypothesis that oxyhemoglobin equilibrium and tachy-cardiac responses during hypoxemia were enhanced after 14-day IH exposures. Normobaric-poikilocapnic hypoxia was induced with inhalation of 10% O2 for 5-6 min interspersed with 4 min recovery on eight nonsmokers. Heart rate (HR), arterial O2 saturation (SaO2), and end-tidal O2 (PETO2) were continuously monitored during cyclic normoxia and hypoxia. These variables were compared during the first and fifth hypoxic bouts between day 1 and day 14. There was a rightward shift in the oxyhemoglobin equilibrium response following 14-day IH exposures, as indicated by the greater PETO2 (an index of arterial PO2) at 50% of SaO2 on day 14 compared with day 1 [33.9 ± 1.5 vs. 28.2 ±1.3 mmHg (P = 0.005) during the first hypoxic bout and 39.4 ± 2.4 vs. 31.4 ± 1.5 mmHg (P = 0.006) during the fifth hypoxic bout] and by the augmented gains of ΔSaO2/ΔPetO2 (i.e., deoxygenation) during PETO2 from 65 to 40 mmHg in the first (1.12 ± 0.08 vs. 0.80 ± 0.02%/mmHg, P = 0.001) and the fifth (1.76 ± 0.31 vs. 1.05 ± 0.06%/mmHg, P = 0.024) hypoxic bouts. Repetitive IH exposures attenuated (P = 0.049) the tachycardiac response to hypoxia while significantly enhancing normoxic R-R interval variability in low-frequency and high-frequency spectra without changes in arterial blood pressure at rest or during hypoxia. We conclude that 14-day IH exposures enhance arterial O2 delivery and improve vagal control of HR during hypoxic hypoxemia.

Original languageEnglish
Pages (from-to)R721-R730
JournalAmerican Journal of Physiology - Regulatory Integrative and Comparative Physiology
Volume307
Issue number6
DOIs
StatePublished - 1 Jan 2014

Fingerprint

Oxyhemoglobins
Hypoxia
Heart Rate
Acclimatization
Inhalation
Arterial Pressure

Keywords

  • Arterial blood pressure
  • Arterial oxygen saturation
  • Chemoreflex
  • Heart rate variability
  • Oxygen dissociation

Cite this

@article{78976ca3a1b5415c9aa95c98b6be2831,
title = "Two-week normobaric intermittent hypoxia exposures enhance oxyhemoglobin equilibrium and cardiac responses during hypoxemia",
abstract = "Intermittent hypoxia (IH) is extensively applied to challenge cardiovascular and respiratory function, and to induce physiological acclimatization. The purpose of this study was to test the hypothesis that oxyhemoglobin equilibrium and tachy-cardiac responses during hypoxemia were enhanced after 14-day IH exposures. Normobaric-poikilocapnic hypoxia was induced with inhalation of 10{\%} O2 for 5-6 min interspersed with 4 min recovery on eight nonsmokers. Heart rate (HR), arterial O2 saturation (SaO2), and end-tidal O2 (PETO2) were continuously monitored during cyclic normoxia and hypoxia. These variables were compared during the first and fifth hypoxic bouts between day 1 and day 14. There was a rightward shift in the oxyhemoglobin equilibrium response following 14-day IH exposures, as indicated by the greater PETO2 (an index of arterial PO2) at 50{\%} of SaO2 on day 14 compared with day 1 [33.9 ± 1.5 vs. 28.2 ±1.3 mmHg (P = 0.005) during the first hypoxic bout and 39.4 ± 2.4 vs. 31.4 ± 1.5 mmHg (P = 0.006) during the fifth hypoxic bout] and by the augmented gains of ΔSaO2/ΔPetO2 (i.e., deoxygenation) during PETO2 from 65 to 40 mmHg in the first (1.12 ± 0.08 vs. 0.80 ± 0.02{\%}/mmHg, P = 0.001) and the fifth (1.76 ± 0.31 vs. 1.05 ± 0.06{\%}/mmHg, P = 0.024) hypoxic bouts. Repetitive IH exposures attenuated (P = 0.049) the tachycardiac response to hypoxia while significantly enhancing normoxic R-R interval variability in low-frequency and high-frequency spectra without changes in arterial blood pressure at rest or during hypoxia. We conclude that 14-day IH exposures enhance arterial O2 delivery and improve vagal control of HR during hypoxic hypoxemia.",
keywords = "Arterial blood pressure, Arterial oxygen saturation, Chemoreflex, Heart rate variability, Oxygen dissociation",
author = "Peizhen Zhang and {Fred Downey}, H. and Shande Chen and Xiangrong Shi",
year = "2014",
month = "1",
day = "1",
doi = "10.1152/ajpregu.00191.2014",
language = "English",
volume = "307",
pages = "R721--R730",
journal = "American Journal of Physiology - Regulatory Integrative and Comparative Physiology",
issn = "0363-6119",
publisher = "American Physiological Society",
number = "6",

}

Two-week normobaric intermittent hypoxia exposures enhance oxyhemoglobin equilibrium and cardiac responses during hypoxemia. / Zhang, Peizhen; Fred Downey, H.; Chen, Shande; Shi, Xiangrong.

In: American Journal of Physiology - Regulatory Integrative and Comparative Physiology, Vol. 307, No. 6, 01.01.2014, p. R721-R730.

Research output: Contribution to journalArticleResearchpeer-review

TY - JOUR

T1 - Two-week normobaric intermittent hypoxia exposures enhance oxyhemoglobin equilibrium and cardiac responses during hypoxemia

AU - Zhang, Peizhen

AU - Fred Downey, H.

AU - Chen, Shande

AU - Shi, Xiangrong

PY - 2014/1/1

Y1 - 2014/1/1

N2 - Intermittent hypoxia (IH) is extensively applied to challenge cardiovascular and respiratory function, and to induce physiological acclimatization. The purpose of this study was to test the hypothesis that oxyhemoglobin equilibrium and tachy-cardiac responses during hypoxemia were enhanced after 14-day IH exposures. Normobaric-poikilocapnic hypoxia was induced with inhalation of 10% O2 for 5-6 min interspersed with 4 min recovery on eight nonsmokers. Heart rate (HR), arterial O2 saturation (SaO2), and end-tidal O2 (PETO2) were continuously monitored during cyclic normoxia and hypoxia. These variables were compared during the first and fifth hypoxic bouts between day 1 and day 14. There was a rightward shift in the oxyhemoglobin equilibrium response following 14-day IH exposures, as indicated by the greater PETO2 (an index of arterial PO2) at 50% of SaO2 on day 14 compared with day 1 [33.9 ± 1.5 vs. 28.2 ±1.3 mmHg (P = 0.005) during the first hypoxic bout and 39.4 ± 2.4 vs. 31.4 ± 1.5 mmHg (P = 0.006) during the fifth hypoxic bout] and by the augmented gains of ΔSaO2/ΔPetO2 (i.e., deoxygenation) during PETO2 from 65 to 40 mmHg in the first (1.12 ± 0.08 vs. 0.80 ± 0.02%/mmHg, P = 0.001) and the fifth (1.76 ± 0.31 vs. 1.05 ± 0.06%/mmHg, P = 0.024) hypoxic bouts. Repetitive IH exposures attenuated (P = 0.049) the tachycardiac response to hypoxia while significantly enhancing normoxic R-R interval variability in low-frequency and high-frequency spectra without changes in arterial blood pressure at rest or during hypoxia. We conclude that 14-day IH exposures enhance arterial O2 delivery and improve vagal control of HR during hypoxic hypoxemia.

AB - Intermittent hypoxia (IH) is extensively applied to challenge cardiovascular and respiratory function, and to induce physiological acclimatization. The purpose of this study was to test the hypothesis that oxyhemoglobin equilibrium and tachy-cardiac responses during hypoxemia were enhanced after 14-day IH exposures. Normobaric-poikilocapnic hypoxia was induced with inhalation of 10% O2 for 5-6 min interspersed with 4 min recovery on eight nonsmokers. Heart rate (HR), arterial O2 saturation (SaO2), and end-tidal O2 (PETO2) were continuously monitored during cyclic normoxia and hypoxia. These variables were compared during the first and fifth hypoxic bouts between day 1 and day 14. There was a rightward shift in the oxyhemoglobin equilibrium response following 14-day IH exposures, as indicated by the greater PETO2 (an index of arterial PO2) at 50% of SaO2 on day 14 compared with day 1 [33.9 ± 1.5 vs. 28.2 ±1.3 mmHg (P = 0.005) during the first hypoxic bout and 39.4 ± 2.4 vs. 31.4 ± 1.5 mmHg (P = 0.006) during the fifth hypoxic bout] and by the augmented gains of ΔSaO2/ΔPetO2 (i.e., deoxygenation) during PETO2 from 65 to 40 mmHg in the first (1.12 ± 0.08 vs. 0.80 ± 0.02%/mmHg, P = 0.001) and the fifth (1.76 ± 0.31 vs. 1.05 ± 0.06%/mmHg, P = 0.024) hypoxic bouts. Repetitive IH exposures attenuated (P = 0.049) the tachycardiac response to hypoxia while significantly enhancing normoxic R-R interval variability in low-frequency and high-frequency spectra without changes in arterial blood pressure at rest or during hypoxia. We conclude that 14-day IH exposures enhance arterial O2 delivery and improve vagal control of HR during hypoxic hypoxemia.

KW - Arterial blood pressure

KW - Arterial oxygen saturation

KW - Chemoreflex

KW - Heart rate variability

KW - Oxygen dissociation

UR - http://www.scopus.com/inward/record.url?scp=84907154748&partnerID=8YFLogxK

U2 - 10.1152/ajpregu.00191.2014

DO - 10.1152/ajpregu.00191.2014

M3 - Article

VL - 307

SP - R721-R730

JO - American Journal of Physiology - Regulatory Integrative and Comparative Physiology

JF - American Journal of Physiology - Regulatory Integrative and Comparative Physiology

SN - 0363-6119

IS - 6

ER -