The RGS protein inhibitor CCG-4986 is a covalent modifier of the RGS4 Gα-interaction face

Adam J. Kimple, Francis S. Willard, Patrick M. Giguère, Christopher A. Johnston, Viorel Mocanu, David P. Siderovski

Research output: Contribution to journalArticle

40 Scopus citations

Abstract

Regulator of G-protein signaling (RGS) proteins accelerate GTP hydrolysis by Gα subunits and are thus crucial to the timing of G protein-coupled receptor (GPCR) signaling. Small molecule inhibition of RGS proteins is an attractive therapeutic approach to diseases involving dysregulated GPCR signaling. Methyl-N-[(4-chlorophenyl)sulfonyl]-4-nitrobenzenesulfinimidoate (CCG-4986) was reported as a selective RGS4 inhibitor, but with an unknown mechanism of action [D.L. Roman, J.N. Talbot, R.A. Roof, R.K. Sunahara, J.R. Traynor, R.R. Neubig, Identification of small-molecule inhibitors of RGS4 using a high-throughput flow cytometry protein interaction assay, Mol. Pharmacol. 71 (2007) 169-75]. Here, we describe its mechanism of action as covalent modification of RGS4. Mutant RGS4 proteins devoid of surface-exposed cysteine residues were characterized using surface plasmon resonance and FRET assays of Gα binding, as well as single-turnover GTP hydrolysis assays of RGS4 GAP activity, demonstrating that cysteine-132 within RGS4 is required for sensitivity to CCG-4986 inhibition. Sensitivity to CCG-4986 can be engendered within RGS8 by replacing the wildtype residue found in this position to cysteine. Mass spectrometry analysis identified a 153-Dalton fragment of CCG-4986 as being covalently attached to the surface-exposed cysteines of the RGS4 RGS domain. We conclude that the mechanism of action of the RGS protein inhibitor CCG-4986 is via covalent modification of Cys-132 of RGS4, likely causing steric hindrance with the all-helical domain of the Gα substrate.

Original languageEnglish
Pages (from-to)1213-1220
Number of pages8
JournalBiochimica et Biophysica Acta - Proteins and Proteomics
Volume1774
Issue number9
DOIs
StatePublished - Sep 2007

Keywords

  • CCG-4986
  • RGS protein inhibitor
  • RGS4
  • Regulator of G-protein signaling
  • Thiol adduct

Fingerprint Dive into the research topics of 'The RGS protein inhibitor CCG-4986 is a covalent modifier of the RGS4 Gα-interaction face'. Together they form a unique fingerprint.

  • Cite this