TY - JOUR
T1 - The reciprocal relationship between cardiac baroreceptor sensitivity and cerebral autoregulation during simulated hemorrhage in humans
AU - Rosenberg, Alexander J.
AU - Kay, Victoria L.
AU - Anderson, Garen K.
AU - Luu, My Loan
AU - Barnes, Haley J.
AU - Sprick, Justin D.
AU - Alvarado, Hannah B.
AU - Rickards, Caroline A.
N1 - Funding Information:
Funding for this study was provided, in part, by the U.S. Army MRMC Combat Casualty Care Research Program (Grant # W81XWH-11-2-0137 ; CAR), the William & Ella Owens Medical Research Foundation (CAR), a contract with Pendar Medical LLC (CAR), and training fellowships awarded to GKA through a National Institutes of Health -supported Neurobiology of Aging Training Grant ( T32 AG020494 , Principal Investigator: N. Sumien), and an American Heart Association Predoctoral Fellowship ( 20PRE35210249 ), to AJR through a Ruth L. Kirchstein NRSA F32 Postdoctoral Fellowship ( 1F32 HL144082-01A1 ), and to JDS through a National Institutes of Health -supported Neurobiology of Aging Training Grant ( T32 AG020494 , Principal Investigator: S. Singh) and a Ruth L. Kirchstein NRSA F31 Predoctoral Fellowship ( 1 F31 HL134242-01A1 ). The content is solely the responsibility of the authors and does not necessarily represent the official views the US Department of Defense.
Publisher Copyright:
© 2022
PY - 2022/9
Y1 - 2022/9
N2 - A reciprocal relationship between the baroreflex and cerebral autoregulation (CA) has been demonstrated at rest and in response to acute hypotension. We hypothesized that the reciprocal relationship between cardiac baroreflex sensitivity (BRS) and CA would be maintained during sustained central hypovolemia induced by lower body negative pressure (LBNP), and that the strength of this relationship would be greater in subjects with higher tolerance to this stress. Healthy young adults (n = 51; 23F/28M) completed a LBNP protocol to presyncope. Subjects were classified as high tolerant (HT; completion of −60 mmHg LBNP stage, ≥20-min) or low tolerant (LT; did not complete −60 mmHg LBNP stage, <20-min). R-R intervals (RRI), systolic arterial pressure (SAP), mean arterial pressure (MAP), and middle cerebral artery velocity (MCAv) were measured continuously. Cardiac BRS was calculated in the time domain (ΔHR/ΔSAP) and frequency domain (RRI-SAP low frequency (LF) transfer function gain), and CA was calculated in the time domain (ΔMCAv/ΔMAP) and frequency domain (MAP-mean MCAv LF transfer function gain). There was a moderate relationship between cardiac BRS and CA for the group of 51 subjects in both the time (R = -0.54, P < 0.0001) and frequency (R = 0.61, P < 0.001) domains; there was a stronger relationship in the HT group (R = 0.73) compared to the LT group (R = 0.31) in the frequency domain (P = 0.08), but no difference between groups in the time domain (HT: R = -0.73 vs. LT: R = -0.63; P = 0.27). These findings suggest that an interaction between BRS and CA may be an important compensatory mechanism that contributes to tolerance to simulated hemorrhage in young healthy adults.
AB - A reciprocal relationship between the baroreflex and cerebral autoregulation (CA) has been demonstrated at rest and in response to acute hypotension. We hypothesized that the reciprocal relationship between cardiac baroreflex sensitivity (BRS) and CA would be maintained during sustained central hypovolemia induced by lower body negative pressure (LBNP), and that the strength of this relationship would be greater in subjects with higher tolerance to this stress. Healthy young adults (n = 51; 23F/28M) completed a LBNP protocol to presyncope. Subjects were classified as high tolerant (HT; completion of −60 mmHg LBNP stage, ≥20-min) or low tolerant (LT; did not complete −60 mmHg LBNP stage, <20-min). R-R intervals (RRI), systolic arterial pressure (SAP), mean arterial pressure (MAP), and middle cerebral artery velocity (MCAv) were measured continuously. Cardiac BRS was calculated in the time domain (ΔHR/ΔSAP) and frequency domain (RRI-SAP low frequency (LF) transfer function gain), and CA was calculated in the time domain (ΔMCAv/ΔMAP) and frequency domain (MAP-mean MCAv LF transfer function gain). There was a moderate relationship between cardiac BRS and CA for the group of 51 subjects in both the time (R = -0.54, P < 0.0001) and frequency (R = 0.61, P < 0.001) domains; there was a stronger relationship in the HT group (R = 0.73) compared to the LT group (R = 0.31) in the frequency domain (P = 0.08), but no difference between groups in the time domain (HT: R = -0.73 vs. LT: R = -0.63; P = 0.27). These findings suggest that an interaction between BRS and CA may be an important compensatory mechanism that contributes to tolerance to simulated hemorrhage in young healthy adults.
KW - Cardiac baroreceptor sensitivity
KW - Cerebral autoregulation
KW - Cerebral blood velocity
KW - Lower body negative pressure
UR - http://www.scopus.com/inward/record.url?scp=85132213822&partnerID=8YFLogxK
U2 - 10.1016/j.autneu.2022.103007
DO - 10.1016/j.autneu.2022.103007
M3 - Review article
C2 - 35716525
AN - SCOPUS:85132213822
SN - 1566-0702
VL - 241
JO - Autonomic Neuroscience: Basic and Clinical
JF - Autonomic Neuroscience: Basic and Clinical
M1 - 103007
ER -