The Effects of Increasing Trunk Flexion During Stair Ascent on the Rate and Magnitude of Achilles Tendon Force in Asymptomatic Females

Lee T. Atkins, Michael Lowrey, Sarah Reagor, Kirsten Walker, Dhalston Cage

Research output: Contribution to journalArticlepeer-review

Abstract

Research indicates that increasing trunk flexion may optimize patellofemoral joint loading. However, this postural change could cause an excessive Achilles tendon force (ATF) and injury risk during movement. This study aimed to examine the effects of increasing trunk flexion during stair ascent on ATF, ankle biomechanics, and vertical ground reaction force in females. Twenty asymptomatic females (age: 23.4 [2.5] y; height: 1.6 [0.8] m; mass: 63.0 [12.2] kg) ascended stairs using their self-selected and flexed trunk postures. Compared with the self-selected trunk condition, decreases were observed for peak ATF (mean differences [MD] = 0.14 N/kg; 95% confidence interval [CI], 0.06 to 0.23; Cohen d = -1.2; P = .003), average rate of ATF development (MD = 0.25 N/kg/s; 95% CI, 0.07 to 0.43; Cohen d = -0.9; P = .010), ankle plantar flexion moment (MD = 0.08 N·m/kg; 95% CI, 0.03 to 0.13; Cohen d = -1.1; P = .005), and vertical ground reaction force (MD = 38.6 N/kg; 95% CI, 20.3 to 56.90; Cohen d = -1.8; P < .001). Increasing trunk flexion did not increase ATF. Instead, this postural change was associated with a decreased ATF rate and magnitude and may benefit individuals with painful Achilles tendinopathy.

Original languageEnglish
Pages (from-to)10-14
Number of pages5
JournalJournal of applied biomechanics
Volume39
Issue number1
DOIs
StatePublished - 1 Feb 2023

Keywords

  • Achilles tendon force
  • stair ascent
  • trunk posture

Fingerprint

Dive into the research topics of 'The Effects of Increasing Trunk Flexion During Stair Ascent on the Rate and Magnitude of Achilles Tendon Force in Asymptomatic Females'. Together they form a unique fingerprint.

Cite this