TY - JOUR
T1 - Tension development in skinned glycerinated rabbit psoas fiber segments irrigated with soluble myosin fragments
AU - Borejdo, Julian
AU - Oplatka, Avraham
N1 - Funding Information:
This work was supported by a Katzir-Katchalsky Fellowship (to J.B.) and by a grant from the Muscular Dystrophy Associations of America.
PY - 1976/7/9
Y1 - 1976/7/9
N2 - Single glycerinated rabbit psoas muscle fibers were skinned by splitting them lengthwise. The fiber segments thus obtained were more easily accessible to solutes in the surrounding medium than the intact fibers. Using such segments, active tension could be fully abolished by adding N-ethylmaleimide under conditions which lead to inhibition of actin activation of the ATPase activity of myosin. Such muscles could, however, develop tension after irrigation with myosin or with the water-soluble active myosin fragments heavy meromyosin (HMM) or its subfragment 1 (HMM-S1). The induced tensions increased with increasing protein concentration in the irrigating solution. At any given protein concentration, the tension generated by myosin was larger than that produced by HMM which was, in turn, greater than that induced by HMM-S1 e.g. at 15 mg/ml protein the tensions produced by these three myosin moieties were 44.0, 14.0 and 2.8 g/cm2, respectively. The tension was found to be intimately associated with ATP splitting; thus, HMM and HMM-S1 which have been treated with reagents abolishing actin-activated ATPase failed to induce tension development. A contractile force may thus be generated through the interaction with actin of the water-soluble, enzymatically active, myosin subfragments involving the splitting of ATP.
AB - Single glycerinated rabbit psoas muscle fibers were skinned by splitting them lengthwise. The fiber segments thus obtained were more easily accessible to solutes in the surrounding medium than the intact fibers. Using such segments, active tension could be fully abolished by adding N-ethylmaleimide under conditions which lead to inhibition of actin activation of the ATPase activity of myosin. Such muscles could, however, develop tension after irrigation with myosin or with the water-soluble active myosin fragments heavy meromyosin (HMM) or its subfragment 1 (HMM-S1). The induced tensions increased with increasing protein concentration in the irrigating solution. At any given protein concentration, the tension generated by myosin was larger than that produced by HMM which was, in turn, greater than that induced by HMM-S1 e.g. at 15 mg/ml protein the tensions produced by these three myosin moieties were 44.0, 14.0 and 2.8 g/cm2, respectively. The tension was found to be intimately associated with ATP splitting; thus, HMM and HMM-S1 which have been treated with reagents abolishing actin-activated ATPase failed to induce tension development. A contractile force may thus be generated through the interaction with actin of the water-soluble, enzymatically active, myosin subfragments involving the splitting of ATP.
UR - http://www.scopus.com/inward/record.url?scp=0017162233&partnerID=8YFLogxK
U2 - 10.1016/0005-2728(76)90127-4
DO - 10.1016/0005-2728(76)90127-4
M3 - Article
C2 - 132970
AN - SCOPUS:0017162233
SN - 0005-2728
VL - 440
SP - 241
EP - 258
JO - Biochimica et Biophysica Acta - Bioenergetics
JF - Biochimica et Biophysica Acta - Bioenergetics
IS - 1
ER -