TY - JOUR
T1 - Synthesis and secretion of apoE in thioglycolate-elicited mouse peritoneal macrophages
T2 - Effect of cholesterol efflux
AU - Dory, L.
N1 - Copyright:
Copyright 2004 Elsevier B.V., All rights reserved.
PY - 1989
Y1 - 1989
N2 - ApoE synthesis and secretion, as a function of cellular cholesterol content and cholesterol efflux, was studied in thioglycolate-elicited mouse peritoneal macrophages. As expected, loading elicited macrophages with cholesterol induced a 5-fold increase in apoE secretion and a 2.5-fold increase in cellular apoE content over a 5-h period. Treatment of cholesterol-loaded cells with HDL3 further increased apoE secretion 1.7-fold and decreased cellular cholesterol by 20%. Treatment of cholesterol-loaded cells with HDL3 and SAH 58.035 (an ACAT inhibitor) increased apoE secretion 2.4-fold and decreased cellular cholesterol content by 35%. Treatment of the cells with the ACAT inhibitor alone suppressed apoE secretion by 40% but did not change cellular cholesterol content. Northern blot analysis of RNA indicated that cholesterol loading increased apoE mRNA 2-fold. ApoE mRNA levels were not further affected by treatment with HDL3 and/or the ACAT inhibitor. Cholesterol-loaded cells, in the absence of HDL3, secreted apoE into the media in two fractions as determined by column chromatography: a large molecular weight complex, (larger than HDL), and an essentially lipid-free protein. In the presence of HDL3, the cells secreted apoE in three fractions: a large molecular weight complex, an essentially lipid-free protein, and over 50% of apoE associated with HDL. In the process, HDL3 became larger and eluted in a position identical to that of HDL2. A small amount of HDL3-derived material was also transformed to an LDL-size particle. Incubation of HDL3 in the absence of cholesterol-loaded cells did not produce these changes. It is concluded that cholesterol-loading increases apoE mRNA content and apoE synthesis. ApoE synthesis and secretion, but not apoE mRNA levels are further increased by HDL-mediated cholesterol efflux.
AB - ApoE synthesis and secretion, as a function of cellular cholesterol content and cholesterol efflux, was studied in thioglycolate-elicited mouse peritoneal macrophages. As expected, loading elicited macrophages with cholesterol induced a 5-fold increase in apoE secretion and a 2.5-fold increase in cellular apoE content over a 5-h period. Treatment of cholesterol-loaded cells with HDL3 further increased apoE secretion 1.7-fold and decreased cellular cholesterol by 20%. Treatment of cholesterol-loaded cells with HDL3 and SAH 58.035 (an ACAT inhibitor) increased apoE secretion 2.4-fold and decreased cellular cholesterol content by 35%. Treatment of the cells with the ACAT inhibitor alone suppressed apoE secretion by 40% but did not change cellular cholesterol content. Northern blot analysis of RNA indicated that cholesterol loading increased apoE mRNA 2-fold. ApoE mRNA levels were not further affected by treatment with HDL3 and/or the ACAT inhibitor. Cholesterol-loaded cells, in the absence of HDL3, secreted apoE into the media in two fractions as determined by column chromatography: a large molecular weight complex, (larger than HDL), and an essentially lipid-free protein. In the presence of HDL3, the cells secreted apoE in three fractions: a large molecular weight complex, an essentially lipid-free protein, and over 50% of apoE associated with HDL. In the process, HDL3 became larger and eluted in a position identical to that of HDL2. A small amount of HDL3-derived material was also transformed to an LDL-size particle. Incubation of HDL3 in the absence of cholesterol-loaded cells did not produce these changes. It is concluded that cholesterol-loading increases apoE mRNA content and apoE synthesis. ApoE synthesis and secretion, but not apoE mRNA levels are further increased by HDL-mediated cholesterol efflux.
UR - http://www.scopus.com/inward/record.url?scp=0024399670&partnerID=8YFLogxK
M3 - Article
C2 - 2477479
AN - SCOPUS:0024399670
SN - 0022-2275
VL - 30
SP - 809
EP - 816
JO - Journal of Lipid Research
JF - Journal of Lipid Research
IS - 6
ER -