Synergistic induction of monooxygenase activity by glucocorticoids and polycyclic aromatic hydrocarbons in human fetal hepatocytes in primary monolayer culture

James Michael Mathis, Russell A. Prough, Evan R. Simpson

Research output: Contribution to journalArticle

34 Citations (Scopus)

Abstract

The ability of polycyclic aromatic hydrocarbons and glucocorticoids to regulate monooxygenase activity of human fetal liver has been studied using hepatocytes prepared by collagenase digestion of liver samples from human abortuses of 13 to 19 weeks of gestational age, and maintained in primary monolayer culture for periods up to 5 days. Addition of 1,2-benzanthracene to the cells caused an increase in monooxygenase activity (3-hydroxylation of benzo[a]pyrene and O-deethylation of 7-ethoxycoumarin) in a time-and concentration-dependent fashion. The concentration of 1,2-benzanthracene required to achieve half-maximal induction was 5 μM. The inductive effect of the polycyclic hydrocarbon was potentiated approximately 2.5-fold when dexamethasone (250 nM) or other glucocorticoids were included in the culture medium. Dexamethasone alone had little or no effect on the induction of monooxygenase activity. The concentration of dexamethasone required for half-maximal stimulation of monooxygenase activity in the presence of 1,2-benzanthracene was 5-10 nM, and the action of dexamethasone was reversed by the addition of cortisol 21-mesylate, consistent with the concept that the action of dexamethasone was mediated by binding to a glucocorticoid receptor. These results are suggestive that glucocorticoids, which are produced by the fetal adrenal and have an important role in the regulation of fetal development, act synergistically with polycyclic aromatic hydrocarbons to induce the activity of liver monooxygenases in the human fetus.

Original languageEnglish
Pages (from-to)650-661
Number of pages12
JournalArchives of Biochemistry and Biophysics
Volume244
Issue number2
DOIs
StatePublished - 1 Feb 1986

Fingerprint

Polycyclic Aromatic Hydrocarbons
Mixed Function Oxygenases
Dexamethasone
Glucocorticoids
Hepatocytes
Monolayers
Liver
Cyclic Hydrocarbons
Fetal Movement
Hydroxylation
Benzo(a)pyrene
Glucocorticoid Receptors
Collagenases
Fetal Development
Human Activities
Gestational Age
Culture Media
Digestion
Fetus
benz(a)anthracene

Cite this

@article{f7d9909d80974316bbe79127dcf033ab,
title = "Synergistic induction of monooxygenase activity by glucocorticoids and polycyclic aromatic hydrocarbons in human fetal hepatocytes in primary monolayer culture",
abstract = "The ability of polycyclic aromatic hydrocarbons and glucocorticoids to regulate monooxygenase activity of human fetal liver has been studied using hepatocytes prepared by collagenase digestion of liver samples from human abortuses of 13 to 19 weeks of gestational age, and maintained in primary monolayer culture for periods up to 5 days. Addition of 1,2-benzanthracene to the cells caused an increase in monooxygenase activity (3-hydroxylation of benzo[a]pyrene and O-deethylation of 7-ethoxycoumarin) in a time-and concentration-dependent fashion. The concentration of 1,2-benzanthracene required to achieve half-maximal induction was 5 μM. The inductive effect of the polycyclic hydrocarbon was potentiated approximately 2.5-fold when dexamethasone (250 nM) or other glucocorticoids were included in the culture medium. Dexamethasone alone had little or no effect on the induction of monooxygenase activity. The concentration of dexamethasone required for half-maximal stimulation of monooxygenase activity in the presence of 1,2-benzanthracene was 5-10 nM, and the action of dexamethasone was reversed by the addition of cortisol 21-mesylate, consistent with the concept that the action of dexamethasone was mediated by binding to a glucocorticoid receptor. These results are suggestive that glucocorticoids, which are produced by the fetal adrenal and have an important role in the regulation of fetal development, act synergistically with polycyclic aromatic hydrocarbons to induce the activity of liver monooxygenases in the human fetus.",
author = "Mathis, {James Michael} and Prough, {Russell A.} and Simpson, {Evan R.}",
year = "1986",
month = "2",
day = "1",
doi = "10.1016/0003-9861(86)90633-8",
language = "English",
volume = "244",
pages = "650--661",
journal = "Archives of Biochemistry and Biophysics",
issn = "0003-9861",
publisher = "Academic Press Inc.",
number = "2",

}

TY - JOUR

T1 - Synergistic induction of monooxygenase activity by glucocorticoids and polycyclic aromatic hydrocarbons in human fetal hepatocytes in primary monolayer culture

AU - Mathis, James Michael

AU - Prough, Russell A.

AU - Simpson, Evan R.

PY - 1986/2/1

Y1 - 1986/2/1

N2 - The ability of polycyclic aromatic hydrocarbons and glucocorticoids to regulate monooxygenase activity of human fetal liver has been studied using hepatocytes prepared by collagenase digestion of liver samples from human abortuses of 13 to 19 weeks of gestational age, and maintained in primary monolayer culture for periods up to 5 days. Addition of 1,2-benzanthracene to the cells caused an increase in monooxygenase activity (3-hydroxylation of benzo[a]pyrene and O-deethylation of 7-ethoxycoumarin) in a time-and concentration-dependent fashion. The concentration of 1,2-benzanthracene required to achieve half-maximal induction was 5 μM. The inductive effect of the polycyclic hydrocarbon was potentiated approximately 2.5-fold when dexamethasone (250 nM) or other glucocorticoids were included in the culture medium. Dexamethasone alone had little or no effect on the induction of monooxygenase activity. The concentration of dexamethasone required for half-maximal stimulation of monooxygenase activity in the presence of 1,2-benzanthracene was 5-10 nM, and the action of dexamethasone was reversed by the addition of cortisol 21-mesylate, consistent with the concept that the action of dexamethasone was mediated by binding to a glucocorticoid receptor. These results are suggestive that glucocorticoids, which are produced by the fetal adrenal and have an important role in the regulation of fetal development, act synergistically with polycyclic aromatic hydrocarbons to induce the activity of liver monooxygenases in the human fetus.

AB - The ability of polycyclic aromatic hydrocarbons and glucocorticoids to regulate monooxygenase activity of human fetal liver has been studied using hepatocytes prepared by collagenase digestion of liver samples from human abortuses of 13 to 19 weeks of gestational age, and maintained in primary monolayer culture for periods up to 5 days. Addition of 1,2-benzanthracene to the cells caused an increase in monooxygenase activity (3-hydroxylation of benzo[a]pyrene and O-deethylation of 7-ethoxycoumarin) in a time-and concentration-dependent fashion. The concentration of 1,2-benzanthracene required to achieve half-maximal induction was 5 μM. The inductive effect of the polycyclic hydrocarbon was potentiated approximately 2.5-fold when dexamethasone (250 nM) or other glucocorticoids were included in the culture medium. Dexamethasone alone had little or no effect on the induction of monooxygenase activity. The concentration of dexamethasone required for half-maximal stimulation of monooxygenase activity in the presence of 1,2-benzanthracene was 5-10 nM, and the action of dexamethasone was reversed by the addition of cortisol 21-mesylate, consistent with the concept that the action of dexamethasone was mediated by binding to a glucocorticoid receptor. These results are suggestive that glucocorticoids, which are produced by the fetal adrenal and have an important role in the regulation of fetal development, act synergistically with polycyclic aromatic hydrocarbons to induce the activity of liver monooxygenases in the human fetus.

UR - http://www.scopus.com/inward/record.url?scp=0022454455&partnerID=8YFLogxK

U2 - 10.1016/0003-9861(86)90633-8

DO - 10.1016/0003-9861(86)90633-8

M3 - Article

C2 - 3753839

AN - SCOPUS:0022454455

VL - 244

SP - 650

EP - 661

JO - Archives of Biochemistry and Biophysics

JF - Archives of Biochemistry and Biophysics

SN - 0003-9861

IS - 2

ER -