TY - JOUR
T1 - Somatic Ca2+ dynamics in response to choline-mediated excitation in histaminergic tuberomammillary neurons
AU - Uteshev-Gaard, Victor V.
AU - Knot, H. J.
PY - 2005/7/19
Y1 - 2005/7/19
N2 - Histaminergic tuberomammillary (TM) neurons of the posterior hypothalamus have been implicated in cognition, alertness and sleep-wakefulness cycles. Spontaneous firing of TM neurons has been associated with histamine release and wakefulness. The expression of α7 nicotinic acetylcholine receptors (nAChRs) in TM neurons suggests a role for endogenous choline and for nicotinic drugs in the regulation of intracellular Ca2+ metabolism, normal TM neuronal activity and histamine release. First, we established the link between TM neuronal spontaneous firing frequency and cytosolic free Ca2+ concentration ([Ca2+]i). A strong correlation was observed: an onset of spontaneous firing (3-4Hz) was accompanied by a 20-fold increase in [Ca2+]i from 56±18nM to 1.0±0.6μM. The same range of firing frequencies has been observed in TM neurons in vivo and is associated with wakefulness. Secondly, choline-induced activation of α7 nAChRs did not elevate [Ca2+]i directly, i.e. in the absence of high-threshold voltage-gated Ca2+ channel (HVGCC) activation. Cd2+ (200μM) completely blocked all Ca2+ signals, but inhibited only 37±16% of α7 nAChR-mediated currents. Thirdly, the responsiveness of [Ca2+] i to choline-mediated excitation was inhibited by hyperpolarization and enhanced by depolarization, sensitizing [Ca2+]i at membrane voltages associated with normal TM neuronal activity. These properties of [Ca2+]i define the ability of TM neurons to translate cholinergic stimuli of identical strengths into different cytosolic Ca 2+ effects, providing the physiological substrate for state-specific modulation of incoming cholinergic information and would be expected to play a very important role in determining activity profiles of TM neurons exposed to elevated concentrations of cholinergic agents, such as choline and nicotine.
AB - Histaminergic tuberomammillary (TM) neurons of the posterior hypothalamus have been implicated in cognition, alertness and sleep-wakefulness cycles. Spontaneous firing of TM neurons has been associated with histamine release and wakefulness. The expression of α7 nicotinic acetylcholine receptors (nAChRs) in TM neurons suggests a role for endogenous choline and for nicotinic drugs in the regulation of intracellular Ca2+ metabolism, normal TM neuronal activity and histamine release. First, we established the link between TM neuronal spontaneous firing frequency and cytosolic free Ca2+ concentration ([Ca2+]i). A strong correlation was observed: an onset of spontaneous firing (3-4Hz) was accompanied by a 20-fold increase in [Ca2+]i from 56±18nM to 1.0±0.6μM. The same range of firing frequencies has been observed in TM neurons in vivo and is associated with wakefulness. Secondly, choline-induced activation of α7 nAChRs did not elevate [Ca2+]i directly, i.e. in the absence of high-threshold voltage-gated Ca2+ channel (HVGCC) activation. Cd2+ (200μM) completely blocked all Ca2+ signals, but inhibited only 37±16% of α7 nAChR-mediated currents. Thirdly, the responsiveness of [Ca2+] i to choline-mediated excitation was inhibited by hyperpolarization and enhanced by depolarization, sensitizing [Ca2+]i at membrane voltages associated with normal TM neuronal activity. These properties of [Ca2+]i define the ability of TM neurons to translate cholinergic stimuli of identical strengths into different cytosolic Ca 2+ effects, providing the physiological substrate for state-specific modulation of incoming cholinergic information and would be expected to play a very important role in determining activity profiles of TM neurons exposed to elevated concentrations of cholinergic agents, such as choline and nicotine.
UR - http://www.scopus.com/inward/record.url?scp=21744455440&partnerID=8YFLogxK
U2 - 10.1016/j.neuroscience.2005.03.013
DO - 10.1016/j.neuroscience.2005.03.013
M3 - Article
C2 - 15963649
AN - SCOPUS:21744455440
SN - 0306-4522
VL - 134
SP - 133
EP - 143
JO - Neuroscience
JF - Neuroscience
IS - 1
ER -