Signature molecules expressed differentially in a liver disease stage-specific manner by HIV-1 and hcv co-infection

Amanda Whitmill, Seongcheol Kim, Vivian Rojas, Fahad Gulraiz, Kazi Afreen, Mamta Jain, Meharvan Singh, In Woo Park

Research output: Contribution to journalArticle

Abstract

To elucidate HIV-1 co-infection-induced acceleration of HCV liver disease and identify stage-specific molecular signatures, we applied a new high-resolution molecular screen, the Affymetrix GeneChip Human Transcriptome Array (HTA2.0), to HCV-mono- and HIV/HCV-co-infected liver specimens from subjects with early and advanced disease. Out of 67,528 well-annotated genes, we have analyzed the functional and statistical significance of 75 and 28 genes expressed differentially between early and advanced stages of HCV mono- and HIV/HCV co-infected patient liver samples, respectively. We also evaluated the expression of 25 and 17 genes between early stages of mono- and co-infected liver tissues and between advanced stages of mono- and co-infected patient’s samples, respectively. Based on our analysis of fold-change in gene expression as a function of disease stage (i.e., early vs. advanced), coupled with consideration of the known relevant functions of these genes, we focused on four candidate genes, ACSL4, GNMT, IFI27, and miR122, which are expressed stage-specifically in HCV mono- and HIV-1/HCV co-infective liver disease and are known to play a pivotal role in regulating HCV-mediated hepatocellular carcinoma (HCC). Our qRT-PCR analysis of the four genes in patient liver specimens supported the microarray data. Protein products of each gene were detected in the endoplasmic reticulum (ER) where HCV replication takes place, and the genes’ expression significantly altered replicability of HCV in the subgenomic replicon harboring regulatory genes of the JFH1 strain of HCV in Huh7.5.1. With respect to three well-known transferrable HIV-1 viral elements—Env, Nef, and Tat—Nef uniquely augmented replicon expression, while Tat, but not the others, substantially modulated expression of the candidate genes in hepatocytic cells. Combinatorial expression of these cellular and viral genes in the replicon cells further altered replicon expression. Taken together, these results showed that HIV-1 viral proteins can exacerbate liver pathology in the co-infected patients by disparate molecular mechanisms—directly or indirectly dysregulating HCV replication, even if lack of association of HCV load and end-stage liver disease in hemophilic patients were reported, and modulating expression of hepatocellular genes critical for disease progression. These findings also provide major insights into development of stage-specific hepatocellular biomarkers for improved diagnosis and prognosis of HCV-mediated liver disease.

Original languageEnglish
Article numbere0202524
JournalPLoS ONE
Volume13
Issue number8
DOIs
StatePublished - Aug 2018

Fingerprint

liver diseases
Human immunodeficiency virus 1
Coinfection
mixed infection
Liver
HIV-1
Liver Diseases
Replicon
Genes
Molecules
replicon
Gene Expression
genes
liver
HIV
gene expression
End Stage Liver Disease
Viral Genes
Gene expression
Viral Proteins

Cite this

Whitmill, Amanda ; Kim, Seongcheol ; Rojas, Vivian ; Gulraiz, Fahad ; Afreen, Kazi ; Jain, Mamta ; Singh, Meharvan ; Park, In Woo. / Signature molecules expressed differentially in a liver disease stage-specific manner by HIV-1 and hcv co-infection. In: PLoS ONE. 2018 ; Vol. 13, No. 8.
@article{7f53bd91990c4f4db057b2183c00799f,
title = "Signature molecules expressed differentially in a liver disease stage-specific manner by HIV-1 and hcv co-infection",
abstract = "To elucidate HIV-1 co-infection-induced acceleration of HCV liver disease and identify stage-specific molecular signatures, we applied a new high-resolution molecular screen, the Affymetrix GeneChip Human Transcriptome Array (HTA2.0), to HCV-mono- and HIV/HCV-co-infected liver specimens from subjects with early and advanced disease. Out of 67,528 well-annotated genes, we have analyzed the functional and statistical significance of 75 and 28 genes expressed differentially between early and advanced stages of HCV mono- and HIV/HCV co-infected patient liver samples, respectively. We also evaluated the expression of 25 and 17 genes between early stages of mono- and co-infected liver tissues and between advanced stages of mono- and co-infected patient’s samples, respectively. Based on our analysis of fold-change in gene expression as a function of disease stage (i.e., early vs. advanced), coupled with consideration of the known relevant functions of these genes, we focused on four candidate genes, ACSL4, GNMT, IFI27, and miR122, which are expressed stage-specifically in HCV mono- and HIV-1/HCV co-infective liver disease and are known to play a pivotal role in regulating HCV-mediated hepatocellular carcinoma (HCC). Our qRT-PCR analysis of the four genes in patient liver specimens supported the microarray data. Protein products of each gene were detected in the endoplasmic reticulum (ER) where HCV replication takes place, and the genes’ expression significantly altered replicability of HCV in the subgenomic replicon harboring regulatory genes of the JFH1 strain of HCV in Huh7.5.1. With respect to three well-known transferrable HIV-1 viral elements—Env, Nef, and Tat—Nef uniquely augmented replicon expression, while Tat, but not the others, substantially modulated expression of the candidate genes in hepatocytic cells. Combinatorial expression of these cellular and viral genes in the replicon cells further altered replicon expression. Taken together, these results showed that HIV-1 viral proteins can exacerbate liver pathology in the co-infected patients by disparate molecular mechanisms—directly or indirectly dysregulating HCV replication, even if lack of association of HCV load and end-stage liver disease in hemophilic patients were reported, and modulating expression of hepatocellular genes critical for disease progression. These findings also provide major insights into development of stage-specific hepatocellular biomarkers for improved diagnosis and prognosis of HCV-mediated liver disease.",
author = "Amanda Whitmill and Seongcheol Kim and Vivian Rojas and Fahad Gulraiz and Kazi Afreen and Mamta Jain and Meharvan Singh and Park, {In Woo}",
year = "2018",
month = "8",
doi = "10.1371/journal.pone.0202524",
language = "English",
volume = "13",
journal = "PLoS ONE",
issn = "1932-6203",
publisher = "Public Library of Science",
number = "8",

}

Signature molecules expressed differentially in a liver disease stage-specific manner by HIV-1 and hcv co-infection. / Whitmill, Amanda; Kim, Seongcheol; Rojas, Vivian; Gulraiz, Fahad; Afreen, Kazi; Jain, Mamta; Singh, Meharvan; Park, In Woo.

In: PLoS ONE, Vol. 13, No. 8, e0202524, 08.2018.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Signature molecules expressed differentially in a liver disease stage-specific manner by HIV-1 and hcv co-infection

AU - Whitmill, Amanda

AU - Kim, Seongcheol

AU - Rojas, Vivian

AU - Gulraiz, Fahad

AU - Afreen, Kazi

AU - Jain, Mamta

AU - Singh, Meharvan

AU - Park, In Woo

PY - 2018/8

Y1 - 2018/8

N2 - To elucidate HIV-1 co-infection-induced acceleration of HCV liver disease and identify stage-specific molecular signatures, we applied a new high-resolution molecular screen, the Affymetrix GeneChip Human Transcriptome Array (HTA2.0), to HCV-mono- and HIV/HCV-co-infected liver specimens from subjects with early and advanced disease. Out of 67,528 well-annotated genes, we have analyzed the functional and statistical significance of 75 and 28 genes expressed differentially between early and advanced stages of HCV mono- and HIV/HCV co-infected patient liver samples, respectively. We also evaluated the expression of 25 and 17 genes between early stages of mono- and co-infected liver tissues and between advanced stages of mono- and co-infected patient’s samples, respectively. Based on our analysis of fold-change in gene expression as a function of disease stage (i.e., early vs. advanced), coupled with consideration of the known relevant functions of these genes, we focused on four candidate genes, ACSL4, GNMT, IFI27, and miR122, which are expressed stage-specifically in HCV mono- and HIV-1/HCV co-infective liver disease and are known to play a pivotal role in regulating HCV-mediated hepatocellular carcinoma (HCC). Our qRT-PCR analysis of the four genes in patient liver specimens supported the microarray data. Protein products of each gene were detected in the endoplasmic reticulum (ER) where HCV replication takes place, and the genes’ expression significantly altered replicability of HCV in the subgenomic replicon harboring regulatory genes of the JFH1 strain of HCV in Huh7.5.1. With respect to three well-known transferrable HIV-1 viral elements—Env, Nef, and Tat—Nef uniquely augmented replicon expression, while Tat, but not the others, substantially modulated expression of the candidate genes in hepatocytic cells. Combinatorial expression of these cellular and viral genes in the replicon cells further altered replicon expression. Taken together, these results showed that HIV-1 viral proteins can exacerbate liver pathology in the co-infected patients by disparate molecular mechanisms—directly or indirectly dysregulating HCV replication, even if lack of association of HCV load and end-stage liver disease in hemophilic patients were reported, and modulating expression of hepatocellular genes critical for disease progression. These findings also provide major insights into development of stage-specific hepatocellular biomarkers for improved diagnosis and prognosis of HCV-mediated liver disease.

AB - To elucidate HIV-1 co-infection-induced acceleration of HCV liver disease and identify stage-specific molecular signatures, we applied a new high-resolution molecular screen, the Affymetrix GeneChip Human Transcriptome Array (HTA2.0), to HCV-mono- and HIV/HCV-co-infected liver specimens from subjects with early and advanced disease. Out of 67,528 well-annotated genes, we have analyzed the functional and statistical significance of 75 and 28 genes expressed differentially between early and advanced stages of HCV mono- and HIV/HCV co-infected patient liver samples, respectively. We also evaluated the expression of 25 and 17 genes between early stages of mono- and co-infected liver tissues and between advanced stages of mono- and co-infected patient’s samples, respectively. Based on our analysis of fold-change in gene expression as a function of disease stage (i.e., early vs. advanced), coupled with consideration of the known relevant functions of these genes, we focused on four candidate genes, ACSL4, GNMT, IFI27, and miR122, which are expressed stage-specifically in HCV mono- and HIV-1/HCV co-infective liver disease and are known to play a pivotal role in regulating HCV-mediated hepatocellular carcinoma (HCC). Our qRT-PCR analysis of the four genes in patient liver specimens supported the microarray data. Protein products of each gene were detected in the endoplasmic reticulum (ER) where HCV replication takes place, and the genes’ expression significantly altered replicability of HCV in the subgenomic replicon harboring regulatory genes of the JFH1 strain of HCV in Huh7.5.1. With respect to three well-known transferrable HIV-1 viral elements—Env, Nef, and Tat—Nef uniquely augmented replicon expression, while Tat, but not the others, substantially modulated expression of the candidate genes in hepatocytic cells. Combinatorial expression of these cellular and viral genes in the replicon cells further altered replicon expression. Taken together, these results showed that HIV-1 viral proteins can exacerbate liver pathology in the co-infected patients by disparate molecular mechanisms—directly or indirectly dysregulating HCV replication, even if lack of association of HCV load and end-stage liver disease in hemophilic patients were reported, and modulating expression of hepatocellular genes critical for disease progression. These findings also provide major insights into development of stage-specific hepatocellular biomarkers for improved diagnosis and prognosis of HCV-mediated liver disease.

UR - http://www.scopus.com/inward/record.url?scp=85052053185&partnerID=8YFLogxK

U2 - 10.1371/journal.pone.0202524

DO - 10.1371/journal.pone.0202524

M3 - Article

C2 - 30138348

AN - SCOPUS:85052053185

VL - 13

JO - PLoS ONE

JF - PLoS ONE

SN - 1932-6203

IS - 8

M1 - e0202524

ER -