Reversible inactivation of dihydrolipoamide dehydrogenase by mitochondrial hydrogen peroxide.

Research output: Contribution to journalArticle

24 Citations (Scopus)

Abstract

Under oxidative stress conditions, mitochondria are the major site for cellular production of reactive oxygen species (ROS) such as superoxide anion and H2O2 that can attack numerous mitochondrial proteins including dihydrolipoamide dehydrogenase (DLDH). While DLDH is known to be vulnerable to oxidative inactivation, the mechanisms have not been clearly elucidated. The present study was therefore designed to investigate the mechanisms of DLDH oxidative inactivation by mitochondrial reactive oxygen species (ROS). Mitochondria, isolated from rat brain, were incubated with mitochondrial respiratory substrates such as pyruvate/malate or succinate in the presence of electron transport chain inhibitors such as rotenone or antimycin A. This is followed by enzyme activity assay and gel-based proteomic analysis. The present study also examined whether ROS-induced DLDH oxidative inactivation could be reversed by reducing reagents such as DTT, cysteine, and glutathione. Results show that DLDH could only be inactivated by complex III- but not complex I-derived ROS; and the accompanying loss of activity due to the inactivation could be restored by cysteine and glutathione, indicating that DLDH oxidative inactivation by complex III-derived ROS was a reversible process. Further studies using catalase indicate that it was H2O2 instead of superoxide anion that was responsible for DLDH inactivation. Moreover, using sulfenic acid-specific labeling techniques in conjunction with two-dimensional Western blot analysis, we show that protein sulfenic acid formation (also known as sulfenation) was associated with the loss of DLDH enzymatic activity observed under our experimental conditions. Additionally, such oxidative modification was shown to be associated with preventing DLDH from further inactivation by the thiol-reactive reagent N-ethylmaleimide. Taken together, the present study provides insights into the mechanisms of DLDH oxidative inactivation by mitochondrial H2O2.

Original languageEnglish
Pages (from-to)123-133
Number of pages11
JournalUnknown Journal
Volume47
Issue number2
DOIs
StatePublished - 1 Jan 2013

Fingerprint

Dihydrolipoamide Dehydrogenase
Hydrogen Peroxide
Reactive Oxygen Species
Sulfenic Acids
Mitochondria
Electron Transport Complex III
Superoxides
Glutathione
Cysteine
Antimycin A
Rotenone
Sulfhydryl Reagents
Ethylmaleimide
Oxidative stress
Mitochondrial Proteins
Enzyme Assays
Enzyme activity
Succinic Acid
Electron Transport
Pyruvic Acid

Cite this

@article{aecefe4d97534647883312113c6af4f1,
title = "Reversible inactivation of dihydrolipoamide dehydrogenase by mitochondrial hydrogen peroxide.",
abstract = "Under oxidative stress conditions, mitochondria are the major site for cellular production of reactive oxygen species (ROS) such as superoxide anion and H2O2 that can attack numerous mitochondrial proteins including dihydrolipoamide dehydrogenase (DLDH). While DLDH is known to be vulnerable to oxidative inactivation, the mechanisms have not been clearly elucidated. The present study was therefore designed to investigate the mechanisms of DLDH oxidative inactivation by mitochondrial reactive oxygen species (ROS). Mitochondria, isolated from rat brain, were incubated with mitochondrial respiratory substrates such as pyruvate/malate or succinate in the presence of electron transport chain inhibitors such as rotenone or antimycin A. This is followed by enzyme activity assay and gel-based proteomic analysis. The present study also examined whether ROS-induced DLDH oxidative inactivation could be reversed by reducing reagents such as DTT, cysteine, and glutathione. Results show that DLDH could only be inactivated by complex III- but not complex I-derived ROS; and the accompanying loss of activity due to the inactivation could be restored by cysteine and glutathione, indicating that DLDH oxidative inactivation by complex III-derived ROS was a reversible process. Further studies using catalase indicate that it was H2O2 instead of superoxide anion that was responsible for DLDH inactivation. Moreover, using sulfenic acid-specific labeling techniques in conjunction with two-dimensional Western blot analysis, we show that protein sulfenic acid formation (also known as sulfenation) was associated with the loss of DLDH enzymatic activity observed under our experimental conditions. Additionally, such oxidative modification was shown to be associated with preventing DLDH from further inactivation by the thiol-reactive reagent N-ethylmaleimide. Taken together, the present study provides insights into the mechanisms of DLDH oxidative inactivation by mitochondrial H2O2.",
author = "Liang-Jun Yan and Nathalie Sumien and Nopporn Thangthaeng and Forster, {Michael J.}",
year = "2013",
month = "1",
day = "1",
doi = "10.3109/10715762.2012.752078",
language = "English",
volume = "47",
pages = "123--133",
journal = "Unknown Journal",
number = "2",

}

Reversible inactivation of dihydrolipoamide dehydrogenase by mitochondrial hydrogen peroxide. / Yan, Liang-Jun; Sumien, Nathalie; Thangthaeng, Nopporn; Forster, Michael J.

In: Unknown Journal, Vol. 47, No. 2, 01.01.2013, p. 123-133.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Reversible inactivation of dihydrolipoamide dehydrogenase by mitochondrial hydrogen peroxide.

AU - Yan, Liang-Jun

AU - Sumien, Nathalie

AU - Thangthaeng, Nopporn

AU - Forster, Michael J.

PY - 2013/1/1

Y1 - 2013/1/1

N2 - Under oxidative stress conditions, mitochondria are the major site for cellular production of reactive oxygen species (ROS) such as superoxide anion and H2O2 that can attack numerous mitochondrial proteins including dihydrolipoamide dehydrogenase (DLDH). While DLDH is known to be vulnerable to oxidative inactivation, the mechanisms have not been clearly elucidated. The present study was therefore designed to investigate the mechanisms of DLDH oxidative inactivation by mitochondrial reactive oxygen species (ROS). Mitochondria, isolated from rat brain, were incubated with mitochondrial respiratory substrates such as pyruvate/malate or succinate in the presence of electron transport chain inhibitors such as rotenone or antimycin A. This is followed by enzyme activity assay and gel-based proteomic analysis. The present study also examined whether ROS-induced DLDH oxidative inactivation could be reversed by reducing reagents such as DTT, cysteine, and glutathione. Results show that DLDH could only be inactivated by complex III- but not complex I-derived ROS; and the accompanying loss of activity due to the inactivation could be restored by cysteine and glutathione, indicating that DLDH oxidative inactivation by complex III-derived ROS was a reversible process. Further studies using catalase indicate that it was H2O2 instead of superoxide anion that was responsible for DLDH inactivation. Moreover, using sulfenic acid-specific labeling techniques in conjunction with two-dimensional Western blot analysis, we show that protein sulfenic acid formation (also known as sulfenation) was associated with the loss of DLDH enzymatic activity observed under our experimental conditions. Additionally, such oxidative modification was shown to be associated with preventing DLDH from further inactivation by the thiol-reactive reagent N-ethylmaleimide. Taken together, the present study provides insights into the mechanisms of DLDH oxidative inactivation by mitochondrial H2O2.

AB - Under oxidative stress conditions, mitochondria are the major site for cellular production of reactive oxygen species (ROS) such as superoxide anion and H2O2 that can attack numerous mitochondrial proteins including dihydrolipoamide dehydrogenase (DLDH). While DLDH is known to be vulnerable to oxidative inactivation, the mechanisms have not been clearly elucidated. The present study was therefore designed to investigate the mechanisms of DLDH oxidative inactivation by mitochondrial reactive oxygen species (ROS). Mitochondria, isolated from rat brain, were incubated with mitochondrial respiratory substrates such as pyruvate/malate or succinate in the presence of electron transport chain inhibitors such as rotenone or antimycin A. This is followed by enzyme activity assay and gel-based proteomic analysis. The present study also examined whether ROS-induced DLDH oxidative inactivation could be reversed by reducing reagents such as DTT, cysteine, and glutathione. Results show that DLDH could only be inactivated by complex III- but not complex I-derived ROS; and the accompanying loss of activity due to the inactivation could be restored by cysteine and glutathione, indicating that DLDH oxidative inactivation by complex III-derived ROS was a reversible process. Further studies using catalase indicate that it was H2O2 instead of superoxide anion that was responsible for DLDH inactivation. Moreover, using sulfenic acid-specific labeling techniques in conjunction with two-dimensional Western blot analysis, we show that protein sulfenic acid formation (also known as sulfenation) was associated with the loss of DLDH enzymatic activity observed under our experimental conditions. Additionally, such oxidative modification was shown to be associated with preventing DLDH from further inactivation by the thiol-reactive reagent N-ethylmaleimide. Taken together, the present study provides insights into the mechanisms of DLDH oxidative inactivation by mitochondrial H2O2.

UR - http://www.scopus.com/inward/record.url?scp=84879303466&partnerID=8YFLogxK

U2 - 10.3109/10715762.2012.752078

DO - 10.3109/10715762.2012.752078

M3 - Article

C2 - 23205777

AN - SCOPUS:84879303466

VL - 47

SP - 123

EP - 133

JO - Unknown Journal

JF - Unknown Journal

IS - 2

ER -