TY - JOUR
T1 - Pyruvate-fortified cardioplegia suppresses oxidative stress and enhances phosphorylation potential of arrested myocardium
AU - Knott, E. Marty
AU - Ryou, Myoung Gwi
AU - Sun, Jie
AU - Heymann, Abraham
AU - Sharma, Arti B.
AU - Lei, Yu
AU - Baig, Mirza
AU - Mallet, Robert T.
AU - Olivencia-Yurvati, Albert H.
PY - 2005/9
Y1 - 2005/9
N2 - Cardioplegic arrest for bypass surgery imposes global ischemia on the myocardium, which generates oxyradicals and depletes myocardial high-energy phosphates. The glycolytic metabolite pyruvate, but not its reduced congener lactate, increases phosphorylation potential and detoxifies oxyradicals in ischemic and postischemic myocardium. This study tested the hypothesis that pyruvate mitigates oxidative stress and preserves the energy state in cardioplegically arrested myocardium. In situ swine hearts were arrested for 60 min with a 4:1 mixture of blood and crystalloid cardioplegia solution containing 188 mM glucose alone (control) or with additional 23.8 mM lactate or 23.8 mM pyruvate and then reperfused for 3 min with cardioplegia-free blood. Glutathione (GSH), glutathione disulfide (GSSG), and energy metabolites [phosphocreatine (PCr), creatine (Cr), Pi] were measured in myocardium, which was snap frozen at 45 min arrest and 3 min reperfusion to determine antioxidant GSH redox state (GSH/GSSG) and PCr phosphorylation potential {[PCr]/([Cr][P i])}. Coronary sinus 8-isoprostane indexed oxidative stress. Pyruvate cardioplegia lowered 8-isoprostane release -40% during arrest versus control and lactate cardioplegia. Lactate and pyruvate cardioplegia dampened (P < 0.05 vs. control) the surge of 8-isoprostane release following reperfusion. Pyruvate doubled GSH/GSSG versus lactate cardioplegia during arrest, but GSH/GSSG fell in all three groups after reperfusion. Myocardial [PCr]/([Cr][Pi]) was maintained in all three groups during arrest. Pyruvate cardioplegia doubled [PCr]/([Cr][Pi]) versus control and lactate cardioplegia after reperfusion. Pyruvate cardioplegia mitigates oxidative stress during cardioplegic arrest and enhances myocardial energy state on reperfusion.
AB - Cardioplegic arrest for bypass surgery imposes global ischemia on the myocardium, which generates oxyradicals and depletes myocardial high-energy phosphates. The glycolytic metabolite pyruvate, but not its reduced congener lactate, increases phosphorylation potential and detoxifies oxyradicals in ischemic and postischemic myocardium. This study tested the hypothesis that pyruvate mitigates oxidative stress and preserves the energy state in cardioplegically arrested myocardium. In situ swine hearts were arrested for 60 min with a 4:1 mixture of blood and crystalloid cardioplegia solution containing 188 mM glucose alone (control) or with additional 23.8 mM lactate or 23.8 mM pyruvate and then reperfused for 3 min with cardioplegia-free blood. Glutathione (GSH), glutathione disulfide (GSSG), and energy metabolites [phosphocreatine (PCr), creatine (Cr), Pi] were measured in myocardium, which was snap frozen at 45 min arrest and 3 min reperfusion to determine antioxidant GSH redox state (GSH/GSSG) and PCr phosphorylation potential {[PCr]/([Cr][P i])}. Coronary sinus 8-isoprostane indexed oxidative stress. Pyruvate cardioplegia lowered 8-isoprostane release -40% during arrest versus control and lactate cardioplegia. Lactate and pyruvate cardioplegia dampened (P < 0.05 vs. control) the surge of 8-isoprostane release following reperfusion. Pyruvate doubled GSH/GSSG versus lactate cardioplegia during arrest, but GSH/GSSG fell in all three groups after reperfusion. Myocardial [PCr]/([Cr][Pi]) was maintained in all three groups during arrest. Pyruvate cardioplegia doubled [PCr]/([Cr][Pi]) versus control and lactate cardioplegia after reperfusion. Pyruvate cardioplegia mitigates oxidative stress during cardioplegic arrest and enhances myocardial energy state on reperfusion.
KW - Cardioplegia
KW - Glutathione
KW - Reactive oxygen species
UR - http://www.scopus.com/inward/record.url?scp=23944470618&partnerID=8YFLogxK
U2 - 10.1152/ajpheart.00322.2005
DO - 10.1152/ajpheart.00322.2005
M3 - Article
C2 - 15908464
AN - SCOPUS:23944470618
SN - 0363-6135
VL - 289
SP - H1123-H1130
JO - American Journal of Physiology - Heart and Circulatory Physiology
JF - American Journal of Physiology - Heart and Circulatory Physiology
IS - 3 58-3
ER -