TY - JOUR
T1 - Potential applications of nanopore sequencing for forensic analysis
AU - Hall, C. L.
AU - Zascavage, Roxanne R.
AU - Sedlazeck, F. J.
AU - Planz, J. V.
N1 - Publisher Copyright:
© 2020 Central Police University Press.
PY - 2020/1
Y1 - 2020/1
N2 - Advancements in DNA sequencing technologies are occurring at a rapid rate. Various platforms have proven useful in all aspects of health and science research, from molecular diagnostics in cancer research to spore identification in bioterrorism. In the field of forensics, one particular single-molecule sequencing platform shows promise for becoming a viable solution for small to midsize forensic laboratories. Oxford Nanopore Technologies (ONT) has developed a portable, nanopore-based sequencing instrument that has already been utilized for on-site identification of Zika and Ebola viruses, full genome sequencing, evaluation of DNA and RNA base modifications, and enrichment-free mitochondrial DNA analysis. The rapid development of this technology creates possibilities relevant to standard DNA sequencing, direct analysis of forensic samples, including blood, semen, and buccal swabs, mitochondrial DNA analysis, SNP and STR analysis, familial identification, and microbial identification for bioterrorism and geolocation. The small size of the platform, its low cost, and its requirement of only basic laboratory equipment makes this platform well suited for small laboratories wishing to begin developing expertise in sequence-based forensic analyses. Herein, we outline recent developments and applications of nanopore sequencing technologies and their potential application in forensic analysis. We address current and potential techniques in mitochondrial DNA analysis, SNP and STR typing, and microbial identification. Additionally, we discuss recent developments in library preparation and data analysis tool further streamlining the sequencing process that integrate workflows in laboratories or in remote field scenarios.
AB - Advancements in DNA sequencing technologies are occurring at a rapid rate. Various platforms have proven useful in all aspects of health and science research, from molecular diagnostics in cancer research to spore identification in bioterrorism. In the field of forensics, one particular single-molecule sequencing platform shows promise for becoming a viable solution for small to midsize forensic laboratories. Oxford Nanopore Technologies (ONT) has developed a portable, nanopore-based sequencing instrument that has already been utilized for on-site identification of Zika and Ebola viruses, full genome sequencing, evaluation of DNA and RNA base modifications, and enrichment-free mitochondrial DNA analysis. The rapid development of this technology creates possibilities relevant to standard DNA sequencing, direct analysis of forensic samples, including blood, semen, and buccal swabs, mitochondrial DNA analysis, SNP and STR analysis, familial identification, and microbial identification for bioterrorism and geolocation. The small size of the platform, its low cost, and its requirement of only basic laboratory equipment makes this platform well suited for small laboratories wishing to begin developing expertise in sequence-based forensic analyses. Herein, we outline recent developments and applications of nanopore sequencing technologies and their potential application in forensic analysis. We address current and potential techniques in mitochondrial DNA analysis, SNP and STR typing, and microbial identification. Additionally, we discuss recent developments in library preparation and data analysis tool further streamlining the sequencing process that integrate workflows in laboratories or in remote field scenarios.
KW - Forensic DNA
KW - Microbial forensics
KW - MtDNA
KW - Nanopore sequencing
KW - SNP
KW - STR
UR - http://www.scopus.com/inward/record.url?scp=85079089566&partnerID=8YFLogxK
M3 - Article
C2 - 32007927
AN - SCOPUS:85079089566
SN - 1042-7201
VL - 32
SP - 23
EP - 54
JO - Forensic Science Review
JF - Forensic Science Review
IS - 1
ER -