NADPH oxidase mediates membrane androgen receptor-induced neurodegeneration

Mavis A.A. Tenkorang, Phong Duong, Rebecca L. Cunningham

Research output: Contribution to journalArticle

Abstract

Oxidative stress (OS) is a common characteristic of several neurodegenerative disorders, including Parkinson disease (PD). PD is more prevalent in men than in women, indicating the possible involvement of androgens. Androgens can have either neuroprotective or neurodamaging effects, depending on the presence of OS. Specifically, in an OS environment, androgens via a membraneassociated androgen receptor (mAR) exacerbate OS-induced damage. To investigate the role of androgens on OS signaling and neurodegeneration, the effects of testosterone and androgen receptor activation on the major OS signaling cascades, the reduced form of NAD phosphate (NADPH) oxidase (NOX)1 and NOX2 and the Gaq/inositol trisphosphate receptor (InsP3R), were examined. To create an OS environment, an immortalized neuronal cell line was exposed to H2O2 prior to cellpermeable/cell-impermeable androgens. Different inhibitors were used to examine the role of G proteins, mAR, InsP3R, and NOX1/2 on OS generation and cell viability. Both testosterone and DHT/3- O-carboxymethyloxime (DHT)-BSA increased H2O2-induced OS and cell death, indicating the involvement of an mAR. Furthermore, classical AR antagonists did not block testosterone's negative effects in an OS environment. Because there are no known antagonists specific for mARs, an AR protein degrader, ASC-J9, was used to block mAR action. ASC-J9 blocked testosterone's negative effects. To determine OS-related signaling mediated by mAR, this study examined NOX1, NOX2, Gaq. NOX1, NOX2, and the Gaq complex with mAR. Only NOX inhibition blocked testosterone-induced cell loss and OS. No effects of blocking either Gaq or G protein activation were observed on testosterone's negative effects. These results indicate that androgen-induced OS is via the mAR-NOX complex and not the mAR-Gαq complex.

Original languageEnglish
Pages (from-to)947-963
Number of pages17
JournalEndocrinology
Volume160
Issue number4
DOIs
StatePublished - 1 Jan 2019

Fingerprint

Androgen Receptors
NAD
Oxidoreductases
Oxidative Stress
Phosphates
Membranes
Androgens
Testosterone
NADPH Oxidase
GTP-Binding Proteins
Parkinson Disease
Mars
Inositol
Neurodegenerative Diseases
Cell Survival
Cell Death

Cite this

Tenkorang, Mavis A.A. ; Duong, Phong ; Cunningham, Rebecca L. / NADPH oxidase mediates membrane androgen receptor-induced neurodegeneration. In: Endocrinology. 2019 ; Vol. 160, No. 4. pp. 947-963.
@article{0d9a72aeb8e64a7983ffb42b8e037490,
title = "NADPH oxidase mediates membrane androgen receptor-induced neurodegeneration",
abstract = "Oxidative stress (OS) is a common characteristic of several neurodegenerative disorders, including Parkinson disease (PD). PD is more prevalent in men than in women, indicating the possible involvement of androgens. Androgens can have either neuroprotective or neurodamaging effects, depending on the presence of OS. Specifically, in an OS environment, androgens via a membraneassociated androgen receptor (mAR) exacerbate OS-induced damage. To investigate the role of androgens on OS signaling and neurodegeneration, the effects of testosterone and androgen receptor activation on the major OS signaling cascades, the reduced form of NAD phosphate (NADPH) oxidase (NOX)1 and NOX2 and the Gaq/inositol trisphosphate receptor (InsP3R), were examined. To create an OS environment, an immortalized neuronal cell line was exposed to H2O2 prior to cellpermeable/cell-impermeable androgens. Different inhibitors were used to examine the role of G proteins, mAR, InsP3R, and NOX1/2 on OS generation and cell viability. Both testosterone and DHT/3- O-carboxymethyloxime (DHT)-BSA increased H2O2-induced OS and cell death, indicating the involvement of an mAR. Furthermore, classical AR antagonists did not block testosterone's negative effects in an OS environment. Because there are no known antagonists specific for mARs, an AR protein degrader, ASC-J9, was used to block mAR action. ASC-J9 blocked testosterone's negative effects. To determine OS-related signaling mediated by mAR, this study examined NOX1, NOX2, Gaq. NOX1, NOX2, and the Gaq complex with mAR. Only NOX inhibition blocked testosterone-induced cell loss and OS. No effects of blocking either Gaq or G protein activation were observed on testosterone's negative effects. These results indicate that androgen-induced OS is via the mAR-NOX complex and not the mAR-Gαq complex.",
author = "Tenkorang, {Mavis A.A.} and Phong Duong and Cunningham, {Rebecca L.}",
year = "2019",
month = "1",
day = "1",
doi = "10.1210/en.2018-01079",
language = "English",
volume = "160",
pages = "947--963",
journal = "Endocrinology",
issn = "0013-7227",
publisher = "Oxford University Press",
number = "4",

}

NADPH oxidase mediates membrane androgen receptor-induced neurodegeneration. / Tenkorang, Mavis A.A.; Duong, Phong; Cunningham, Rebecca L.

In: Endocrinology, Vol. 160, No. 4, 01.01.2019, p. 947-963.

Research output: Contribution to journalArticle

TY - JOUR

T1 - NADPH oxidase mediates membrane androgen receptor-induced neurodegeneration

AU - Tenkorang, Mavis A.A.

AU - Duong, Phong

AU - Cunningham, Rebecca L.

PY - 2019/1/1

Y1 - 2019/1/1

N2 - Oxidative stress (OS) is a common characteristic of several neurodegenerative disorders, including Parkinson disease (PD). PD is more prevalent in men than in women, indicating the possible involvement of androgens. Androgens can have either neuroprotective or neurodamaging effects, depending on the presence of OS. Specifically, in an OS environment, androgens via a membraneassociated androgen receptor (mAR) exacerbate OS-induced damage. To investigate the role of androgens on OS signaling and neurodegeneration, the effects of testosterone and androgen receptor activation on the major OS signaling cascades, the reduced form of NAD phosphate (NADPH) oxidase (NOX)1 and NOX2 and the Gaq/inositol trisphosphate receptor (InsP3R), were examined. To create an OS environment, an immortalized neuronal cell line was exposed to H2O2 prior to cellpermeable/cell-impermeable androgens. Different inhibitors were used to examine the role of G proteins, mAR, InsP3R, and NOX1/2 on OS generation and cell viability. Both testosterone and DHT/3- O-carboxymethyloxime (DHT)-BSA increased H2O2-induced OS and cell death, indicating the involvement of an mAR. Furthermore, classical AR antagonists did not block testosterone's negative effects in an OS environment. Because there are no known antagonists specific for mARs, an AR protein degrader, ASC-J9, was used to block mAR action. ASC-J9 blocked testosterone's negative effects. To determine OS-related signaling mediated by mAR, this study examined NOX1, NOX2, Gaq. NOX1, NOX2, and the Gaq complex with mAR. Only NOX inhibition blocked testosterone-induced cell loss and OS. No effects of blocking either Gaq or G protein activation were observed on testosterone's negative effects. These results indicate that androgen-induced OS is via the mAR-NOX complex and not the mAR-Gαq complex.

AB - Oxidative stress (OS) is a common characteristic of several neurodegenerative disorders, including Parkinson disease (PD). PD is more prevalent in men than in women, indicating the possible involvement of androgens. Androgens can have either neuroprotective or neurodamaging effects, depending on the presence of OS. Specifically, in an OS environment, androgens via a membraneassociated androgen receptor (mAR) exacerbate OS-induced damage. To investigate the role of androgens on OS signaling and neurodegeneration, the effects of testosterone and androgen receptor activation on the major OS signaling cascades, the reduced form of NAD phosphate (NADPH) oxidase (NOX)1 and NOX2 and the Gaq/inositol trisphosphate receptor (InsP3R), were examined. To create an OS environment, an immortalized neuronal cell line was exposed to H2O2 prior to cellpermeable/cell-impermeable androgens. Different inhibitors were used to examine the role of G proteins, mAR, InsP3R, and NOX1/2 on OS generation and cell viability. Both testosterone and DHT/3- O-carboxymethyloxime (DHT)-BSA increased H2O2-induced OS and cell death, indicating the involvement of an mAR. Furthermore, classical AR antagonists did not block testosterone's negative effects in an OS environment. Because there are no known antagonists specific for mARs, an AR protein degrader, ASC-J9, was used to block mAR action. ASC-J9 blocked testosterone's negative effects. To determine OS-related signaling mediated by mAR, this study examined NOX1, NOX2, Gaq. NOX1, NOX2, and the Gaq complex with mAR. Only NOX inhibition blocked testosterone-induced cell loss and OS. No effects of blocking either Gaq or G protein activation were observed on testosterone's negative effects. These results indicate that androgen-induced OS is via the mAR-NOX complex and not the mAR-Gαq complex.

UR - http://www.scopus.com/inward/record.url?scp=85063948793&partnerID=8YFLogxK

U2 - 10.1210/en.2018-01079

DO - 10.1210/en.2018-01079

M3 - Article

C2 - 30811529

AN - SCOPUS:85063948793

VL - 160

SP - 947

EP - 963

JO - Endocrinology

JF - Endocrinology

SN - 0013-7227

IS - 4

ER -