TY - JOUR
T1 - Mutational analysis of the human 2B4 (CD244)/CD48 interaction
T2 - Lys 68 and Glu70 in the V domain of 2B4 are critical for CD48 binding and functional activation of NK cells
AU - Mathew, Stephen O.
AU - Kumaresan, Pappanaicken R.
AU - Lee, Jae Kyung
AU - Huynh, Van T.
AU - Mathew, Porunelloor A.
PY - 2005/7/15
Y1 - 2005/7/15
N2 - Interaction between receptors and ligands plays a critical role in the generation of immune responses. The 2B4 (CD244), a member of the CD2 subset of the Ig superfamily, is the high affinity ligand for CD48. It is expressed on NK cells, T cells, monocytes, and basophils. Recent data indicate that 2B4/CD48 interactions regulate NK and T lymphocyte functions. In human NK cells, 2B4/ CD48 interaction induces activation signals, whereas in murine NK cells it sends inhibitory signals. To determine the structural basis for 2B4/CD48 interaction, selected amino acid residues in the V domain of the human 2B4 (h2B4) were mutated to alanine by site-directed mutagenesis. Following transient expression of these mutants in B16F10 melanoma cells, their interaction with soluble CD48-Fc fusion protein was assessed by flow cytometry. We identified amino acid residues in the extracellular domain of h2B4 that are involved in interacting with CD48. Binding of CD48-Fc fusion protein to RNK-16 cells stably transfected with wild-type and a double-mutant Lys68Ala-Glu70Ala h2B4 further demonstrated that Lys68 and Glu70 in the V domain of h2B4 are essential for 2B4/CD48 interaction. Functional analysis indicated that Lys68 and Glu70 in the extracellular domain of h2B4 play a key role in the activation of human NK cells through 2B4/CD48 interaction.
AB - Interaction between receptors and ligands plays a critical role in the generation of immune responses. The 2B4 (CD244), a member of the CD2 subset of the Ig superfamily, is the high affinity ligand for CD48. It is expressed on NK cells, T cells, monocytes, and basophils. Recent data indicate that 2B4/CD48 interactions regulate NK and T lymphocyte functions. In human NK cells, 2B4/ CD48 interaction induces activation signals, whereas in murine NK cells it sends inhibitory signals. To determine the structural basis for 2B4/CD48 interaction, selected amino acid residues in the V domain of the human 2B4 (h2B4) were mutated to alanine by site-directed mutagenesis. Following transient expression of these mutants in B16F10 melanoma cells, their interaction with soluble CD48-Fc fusion protein was assessed by flow cytometry. We identified amino acid residues in the extracellular domain of h2B4 that are involved in interacting with CD48. Binding of CD48-Fc fusion protein to RNK-16 cells stably transfected with wild-type and a double-mutant Lys68Ala-Glu70Ala h2B4 further demonstrated that Lys68 and Glu70 in the V domain of h2B4 are essential for 2B4/CD48 interaction. Functional analysis indicated that Lys68 and Glu70 in the extracellular domain of h2B4 play a key role in the activation of human NK cells through 2B4/CD48 interaction.
UR - http://www.scopus.com/inward/record.url?scp=23244449293&partnerID=8YFLogxK
U2 - 10.4049/jimmunol.175.2.1005
DO - 10.4049/jimmunol.175.2.1005
M3 - Article
C2 - 16002700
AN - SCOPUS:23244449293
SN - 0022-1767
VL - 175
SP - 1005
EP - 1013
JO - Journal of Immunology
JF - Journal of Immunology
IS - 2
ER -