Microfilament network is needed for the endocytosis of water channels and not for apical membrane insertion upon vasopressin action

Adnan Dibas, Abdul Mia, Thomas Yorio

Research output: Contribution to journalArticle

5 Scopus citations

Abstract

In the current study, a novel role for the microfilaments in vasopressin-induced water transport in toad urinary bladders, a popular model for the mammalian collecting duct, was established. Vasopressin-induced water transport was not affected by cytochalasin D (CD, 20 μM) or letrunculin 15 (Lat B, 0.5-2 μM), microfilament-disrupting reagents, suggesting that the initial trafficking of vesicles containing water channels end insertion of membranes into the epical membrane are microfilament-independent. After the removal of vasopressin, bladders treated with CD or Lat B continued to transport water at least 2-3-fold greater than those that received the vehicle. Furthermore, the enhanced water transport was inhibited by HgCl2 (1 mM), a potent inhibitor of water channel-mediated water flow, suggesting that the enhanced water flow was through water channels. In addition, Lat B and CD inhibited vasopressin-induced endocytosis of horseradish peroxidase (HRP), a fluid endocytotic marker. These results suggested that although microfilaments are not needed for the initial trafficking of water channels to the epical side, the microfilament network is essential for the retrieval of water channels following their insertion into epical membranes.

Original languageEnglish
Pages (from-to)203-209
Number of pages7
JournalProceedings of the Society for Experimental Biology and Medicine
Volume223
Issue number2
DOIs
StatePublished - Feb 2000

Fingerprint Dive into the research topics of 'Microfilament network is needed for the endocytosis of water channels and not for apical membrane insertion upon vasopressin action'. Together they form a unique fingerprint.

  • Cite this