TY - JOUR
T1 - Microbial enrichment and gene functional categories revealed on the walls of a spent fuel pool of a nuclear power plant
AU - Silva, Rosane
AU - De Almeida, Darcy Muniz
AU - Cabral, Bianca Catarina Azeredo
AU - Dias, Victor Hugo Giordano
AU - De Toledo E Mello, Isadora Cristina
AU - Péterürményi, Turán
AU - Woerner, August E.
AU - De Moura Neto, Rodrigo Soares
AU - Budowle, Bruce
AU - Nassar, Cristina Aparecida Gomes
N1 - Publisher Copyright:
© 2018 Silva et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
PY - 2018/10
Y1 - 2018/10
N2 - Microorganisms developing in the liner of the spent fuel pool (SFP) and the fuel transfer channel (FTC) of a Nuclear Power Plant (NPP) can form high radiation resistant biofilms and cause corrosion. Due to difficulties and limitations to obtain large samples from SFP and FTC, cotton swabs were used to collect the biofilm from the wall of these installations. Molecular characterization was performed using massively parallel sequencing to obtain a taxonomic and functional gene classification. Also, samples from the drainage system were evaluated because microorganisms may travel over the 12-meter column of the pool water of the Brazilian Nuclear Power Plant (Angra1), which has been functioning since 1985. Regardless of the treatment of the pool water, our data reveal the unexpected presence of Fungi (Basidiomycota and Ascomycota) as the main contaminators of the SFP and FTC. Ustilaginomycetes (Basidiomycota) was the major class contributor (70%) in the SFP and FTC reflecting the little diversity in these sites; nevertheless, Proteobacteria, Actinobacteria, Firmicutes (Bacilli) were present in small proportions. Mapping total reads against six fungal reference genomes indicate that there is, in fact, a high abundance of fungal sequences in samples collected from SFP and FTC. Analysis of the ribosomal internal transcribed spacer (ITS) 1 and 2 regions and the protein found in the mitochondria of eukaryotic cells, cytochrome b (cytb) grouped our sample fungi in the clade 7 as Ustilago and Pseudozyma. In contrast, in the drainage system, Alphaproteobacteria were present in high abundances (55%). The presence of Sphingopyxis, Mesorhizobium, Erythrobacter, Sphingomonas, Novosphingobium, Sphingobium, Chelativorans, Oceanicaulis, Acidovorax, and Cyanobacteria was observed. Based on genomic annotation data, the assessment of the biological function found a higher proportion of protein-coding sequences related to respiration and protein metabolism in SFP and FTC samples. The knowledge of this biological inventorypresent in the system may contribute to further studies of potential microorganisms that might be useful for bioremediation of nuclear waste.
AB - Microorganisms developing in the liner of the spent fuel pool (SFP) and the fuel transfer channel (FTC) of a Nuclear Power Plant (NPP) can form high radiation resistant biofilms and cause corrosion. Due to difficulties and limitations to obtain large samples from SFP and FTC, cotton swabs were used to collect the biofilm from the wall of these installations. Molecular characterization was performed using massively parallel sequencing to obtain a taxonomic and functional gene classification. Also, samples from the drainage system were evaluated because microorganisms may travel over the 12-meter column of the pool water of the Brazilian Nuclear Power Plant (Angra1), which has been functioning since 1985. Regardless of the treatment of the pool water, our data reveal the unexpected presence of Fungi (Basidiomycota and Ascomycota) as the main contaminators of the SFP and FTC. Ustilaginomycetes (Basidiomycota) was the major class contributor (70%) in the SFP and FTC reflecting the little diversity in these sites; nevertheless, Proteobacteria, Actinobacteria, Firmicutes (Bacilli) were present in small proportions. Mapping total reads against six fungal reference genomes indicate that there is, in fact, a high abundance of fungal sequences in samples collected from SFP and FTC. Analysis of the ribosomal internal transcribed spacer (ITS) 1 and 2 regions and the protein found in the mitochondria of eukaryotic cells, cytochrome b (cytb) grouped our sample fungi in the clade 7 as Ustilago and Pseudozyma. In contrast, in the drainage system, Alphaproteobacteria were present in high abundances (55%). The presence of Sphingopyxis, Mesorhizobium, Erythrobacter, Sphingomonas, Novosphingobium, Sphingobium, Chelativorans, Oceanicaulis, Acidovorax, and Cyanobacteria was observed. Based on genomic annotation data, the assessment of the biological function found a higher proportion of protein-coding sequences related to respiration and protein metabolism in SFP and FTC samples. The knowledge of this biological inventorypresent in the system may contribute to further studies of potential microorganisms that might be useful for bioremediation of nuclear waste.
UR - http://www.scopus.com/inward/record.url?scp=85054462991&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0205228
DO - 10.1371/journal.pone.0205228
M3 - Article
C2 - 30286173
AN - SCOPUS:85054462991
SN - 1932-6203
VL - 13
JO - PLoS ONE
JF - PLoS ONE
IS - 10
M1 - e0205228
ER -