TY - JOUR
T1 - Matrix metalloproteinase-2 production and its binding to the matrix are increased in abdominal aortic aneurysms
AU - Davis, Valerie
AU - Persidskaia, Raisa
AU - Baca-Regen, Lisa
AU - Itoh, Yoshifumi
AU - Nagase, Hideaki
AU - Persidsky, Yuri
AU - Ghorpade, Anuja
AU - Timothy Baxter, B.
PY - 1998
Y1 - 1998
N2 - Degradation of the elastic media is a hallmark of abdominal aortic aneurysms (AAAs). We examined the expression of 2 elastolytic matrix metalloproteinases (MMPs), MMP-2 and MMP-9, in AAA aortic tissues compared with those from atherosclerotic occlusive disease (AOD) and nondiseased control tissues. Quantitative competitive reverse transcription-polymerase chain reaction and gelatin zymography showed increased MMP-9 mRNA and protein in both AAA and AOD tissues compared with those in control tissue, but there was no significant difference between AAA and AOD. In contrast, MMP-2 mRNA and protein levels were significantly higher in AAA than in AOD or control tissues. Sequential extraction of the MMPs from the aortic tissue with a physiological salt solution, 2% dimethylsulfoxide (DMSO), and 10 mol/L urea showed that large amounts of MMP-2 and MMP-9 were bound to the matrix. The most conspicuous finding was that the levels of MMP-2 were significantly elevated in the DMSO fraction in AAA tissues compared with AOD and control tissues. In addition, a large portion of MMP-2 found in the DMSO and urea fractions was in the active 62-kDa form, indicating that the precursor of MMP-2 in AAA is largely activated locally and binds to the tissue matrix tightly. By immunolocalization, MMP-9 was found to be primarily produced by macrophages and MMP-2 by mesenchymal cells. The production of MMP-2 was prominent when mesenchymal cells were surrounded by inflammatory cells, suggesting paracrine modulation of MMP-2 expression in AAAs. These observations emphasize that MMP-2 participates in the progression of AAAs by degrading aortic tissue matrix components.
AB - Degradation of the elastic media is a hallmark of abdominal aortic aneurysms (AAAs). We examined the expression of 2 elastolytic matrix metalloproteinases (MMPs), MMP-2 and MMP-9, in AAA aortic tissues compared with those from atherosclerotic occlusive disease (AOD) and nondiseased control tissues. Quantitative competitive reverse transcription-polymerase chain reaction and gelatin zymography showed increased MMP-9 mRNA and protein in both AAA and AOD tissues compared with those in control tissue, but there was no significant difference between AAA and AOD. In contrast, MMP-2 mRNA and protein levels were significantly higher in AAA than in AOD or control tissues. Sequential extraction of the MMPs from the aortic tissue with a physiological salt solution, 2% dimethylsulfoxide (DMSO), and 10 mol/L urea showed that large amounts of MMP-2 and MMP-9 were bound to the matrix. The most conspicuous finding was that the levels of MMP-2 were significantly elevated in the DMSO fraction in AAA tissues compared with AOD and control tissues. In addition, a large portion of MMP-2 found in the DMSO and urea fractions was in the active 62-kDa form, indicating that the precursor of MMP-2 in AAA is largely activated locally and binds to the tissue matrix tightly. By immunolocalization, MMP-9 was found to be primarily produced by macrophages and MMP-2 by mesenchymal cells. The production of MMP-2 was prominent when mesenchymal cells were surrounded by inflammatory cells, suggesting paracrine modulation of MMP-2 expression in AAAs. These observations emphasize that MMP-2 participates in the progression of AAAs by degrading aortic tissue matrix components.
KW - Abdominal aortic aneurysms
KW - Lymphocytes
KW - Macrophages
KW - Matrix metalloproteinases
KW - Smooth muscle cells
UR - http://www.scopus.com/inward/record.url?scp=0031694482&partnerID=8YFLogxK
U2 - 10.1161/01.ATV.18.10.1625
DO - 10.1161/01.ATV.18.10.1625
M3 - Article
C2 - 9763536
AN - SCOPUS:0031694482
SN - 1079-5642
VL - 18
SP - 1625
EP - 1633
JO - Arteriosclerosis, Thrombosis, and Vascular Biology
JF - Arteriosclerosis, Thrombosis, and Vascular Biology
IS - 10
ER -