Magnesium activated adenosine formation in intact perfused heart: Predominance of ecto 5′-nucleotidase during hypermagnesemia

Robert T. Mallet, Sun Jie, Wen Lin Fan, Young Hee Kang, Rolf Bünger

Research output: Contribution to journalArticle

26 Citations (Scopus)

Abstract

Magnesium ion is an allosteric effector of 5′-nucleotidase and thus activates adenosine production from AMP. Two distinct 5′-nucleotidase systems, the membrane-bound ecto and the soluble cytosolic isoforms, exist in mammalian myocardium. The aim of this study was to delineate the contributions of the ecto vs. cytosolic isoforms to Mg2+-stimulated cardiac purine nucleoside formation and release. Isolated guinea pig hearts were retrogradely perfused at their physiological aortic pressure with Krebs-Henseleit bicarbonate buffer fortified with 10 mM glucose. AMP and the adenylate degradatives adenosine and inosine were measured in coronary venous effluent and in epicardial transudate, which was sampled to estimate concentrations of adenylate degradatives in the interstitium. When perfusate Mg2+ was increased from 0.6 to 6 mM, coronary vascular resistance and spontaneous heart rate fell, and steady-state coronary venous release of adenosine + inosine rose severalfold. Cytosolic free magnesium, as estimated by 31P-NMR after 15 min of perfusion with 6 mM Mg2+ or from chemically measured indicator metabolites after 30 min, rose 60 and 144% respectively (P < 0.05). Excess Mg2+ stimulated purine nucleoside release nearly threefold in coronary venous effluent and four-to sevenfold in epicardial transudate. 50 μM α, β-methylene adenosine 5′-diphosphate (AOPCP), a selective inhibitor of ecto 5′-nucleotidase, elevated interstitial AMP concentration tenfold, did not attenuate basal nucleoside release, but completely inhibited Mg2+-stimulated coronary venous purine nucleoside release and blunted Mg2+-stimulated interstitial purine nucleoside formation by 69%. During perfusion with exogenous 1 μM [8-14C]AMP, excess perfusate MgCl2 increased [14C]adenosine release by 63% in coronary effluent and 133% in epicardial transudate. AOPCP decreased baseline [14C]adenosine release in coronary effluent and epicardial transudate by 85-90%, caused equilibration of arterial and epicardial AMP, and attenuated MgCl2 activation of [14C]adenosine formation by approx. 75%, in both the vascular and interstitial compartments. Intramyocytic concentrations of allosteric regulators of the cytosolic 5′-nucleotidases were evaluated in stop-frozen myocardium. Excess magnesium did not appreciably alter intracellular pH and ATP concentration, but lowered free cytosolic ADP and AMP concentrations by 50 and 70%, respectively. A simplified model of compartmentalized adenosine metabolism is proposed in which magnesium ion-activated cardiac purine release originates predominantly from the ecto 5′-nucleotidase; magnesium ion stimulation of metabolic flux through the cytosolic isoforms was constrained by concomitant reductions in intracellular AMP substrate and allosteric activator ADP. Magnesium ion-enhanced adenosine formation by 5′-nucleotidase could contribute to the known cardioprotective effects of this clinically used cation.

Original languageEnglish
Pages (from-to)165-176
Number of pages12
JournalBiochimica et Biophysica Acta - General Subjects
Volume1290
Issue number2
DOIs
StatePublished - 4 Jun 1996

Fingerprint

5'-Nucleotidase
Adenosine
Magnesium
Adenosine Monophosphate
Purine Nucleosides
Exudates and Transudates
Effluents
Adenosine Diphosphate
Ions
Inosine
Protein Isoforms
Magnesium Chloride
Myocardium
Perfusion
Bicarbonates
Diphosphates
Nucleosides
Vascular Resistance
Metabolites
Blood Vessels

Keywords

  • (Guinea pig)
  • (Heart)
  • 5′-nucleotidase
  • Adenosine
  • AMP
  • ATP phosphorylation potential
  • Magnesium, free
  • Myocardium

Cite this

@article{a883fa110ee144458cd5f4f5ffbfa7c9,
title = "Magnesium activated adenosine formation in intact perfused heart: Predominance of ecto 5′-nucleotidase during hypermagnesemia",
abstract = "Magnesium ion is an allosteric effector of 5′-nucleotidase and thus activates adenosine production from AMP. Two distinct 5′-nucleotidase systems, the membrane-bound ecto and the soluble cytosolic isoforms, exist in mammalian myocardium. The aim of this study was to delineate the contributions of the ecto vs. cytosolic isoforms to Mg2+-stimulated cardiac purine nucleoside formation and release. Isolated guinea pig hearts were retrogradely perfused at their physiological aortic pressure with Krebs-Henseleit bicarbonate buffer fortified with 10 mM glucose. AMP and the adenylate degradatives adenosine and inosine were measured in coronary venous effluent and in epicardial transudate, which was sampled to estimate concentrations of adenylate degradatives in the interstitium. When perfusate Mg2+ was increased from 0.6 to 6 mM, coronary vascular resistance and spontaneous heart rate fell, and steady-state coronary venous release of adenosine + inosine rose severalfold. Cytosolic free magnesium, as estimated by 31P-NMR after 15 min of perfusion with 6 mM Mg2+ or from chemically measured indicator metabolites after 30 min, rose 60 and 144{\%} respectively (P < 0.05). Excess Mg2+ stimulated purine nucleoside release nearly threefold in coronary venous effluent and four-to sevenfold in epicardial transudate. 50 μM α, β-methylene adenosine 5′-diphosphate (AOPCP), a selective inhibitor of ecto 5′-nucleotidase, elevated interstitial AMP concentration tenfold, did not attenuate basal nucleoside release, but completely inhibited Mg2+-stimulated coronary venous purine nucleoside release and blunted Mg2+-stimulated interstitial purine nucleoside formation by 69{\%}. During perfusion with exogenous 1 μM [8-14C]AMP, excess perfusate MgCl2 increased [14C]adenosine release by 63{\%} in coronary effluent and 133{\%} in epicardial transudate. AOPCP decreased baseline [14C]adenosine release in coronary effluent and epicardial transudate by 85-90{\%}, caused equilibration of arterial and epicardial AMP, and attenuated MgCl2 activation of [14C]adenosine formation by approx. 75{\%}, in both the vascular and interstitial compartments. Intramyocytic concentrations of allosteric regulators of the cytosolic 5′-nucleotidases were evaluated in stop-frozen myocardium. Excess magnesium did not appreciably alter intracellular pH and ATP concentration, but lowered free cytosolic ADP and AMP concentrations by 50 and 70{\%}, respectively. A simplified model of compartmentalized adenosine metabolism is proposed in which magnesium ion-activated cardiac purine release originates predominantly from the ecto 5′-nucleotidase; magnesium ion stimulation of metabolic flux through the cytosolic isoforms was constrained by concomitant reductions in intracellular AMP substrate and allosteric activator ADP. Magnesium ion-enhanced adenosine formation by 5′-nucleotidase could contribute to the known cardioprotective effects of this clinically used cation.",
keywords = "(Guinea pig), (Heart), 5′-nucleotidase, Adenosine, AMP, ATP phosphorylation potential, Magnesium, free, Myocardium",
author = "Mallet, {Robert T.} and Sun Jie and Fan, {Wen Lin} and Kang, {Young Hee} and Rolf B{\"u}nger",
year = "1996",
month = "6",
day = "4",
doi = "10.1016/0304-4165(96)00016-5",
language = "English",
volume = "1290",
pages = "165--176",
journal = "Biochimica et Biophysica Acta - General Subjects",
issn = "0304-4165",
publisher = "Elsevier",
number = "2",

}

Magnesium activated adenosine formation in intact perfused heart : Predominance of ecto 5′-nucleotidase during hypermagnesemia. / Mallet, Robert T.; Jie, Sun; Fan, Wen Lin; Kang, Young Hee; Bünger, Rolf.

In: Biochimica et Biophysica Acta - General Subjects, Vol. 1290, No. 2, 04.06.1996, p. 165-176.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Magnesium activated adenosine formation in intact perfused heart

T2 - Predominance of ecto 5′-nucleotidase during hypermagnesemia

AU - Mallet, Robert T.

AU - Jie, Sun

AU - Fan, Wen Lin

AU - Kang, Young Hee

AU - Bünger, Rolf

PY - 1996/6/4

Y1 - 1996/6/4

N2 - Magnesium ion is an allosteric effector of 5′-nucleotidase and thus activates adenosine production from AMP. Two distinct 5′-nucleotidase systems, the membrane-bound ecto and the soluble cytosolic isoforms, exist in mammalian myocardium. The aim of this study was to delineate the contributions of the ecto vs. cytosolic isoforms to Mg2+-stimulated cardiac purine nucleoside formation and release. Isolated guinea pig hearts were retrogradely perfused at their physiological aortic pressure with Krebs-Henseleit bicarbonate buffer fortified with 10 mM glucose. AMP and the adenylate degradatives adenosine and inosine were measured in coronary venous effluent and in epicardial transudate, which was sampled to estimate concentrations of adenylate degradatives in the interstitium. When perfusate Mg2+ was increased from 0.6 to 6 mM, coronary vascular resistance and spontaneous heart rate fell, and steady-state coronary venous release of adenosine + inosine rose severalfold. Cytosolic free magnesium, as estimated by 31P-NMR after 15 min of perfusion with 6 mM Mg2+ or from chemically measured indicator metabolites after 30 min, rose 60 and 144% respectively (P < 0.05). Excess Mg2+ stimulated purine nucleoside release nearly threefold in coronary venous effluent and four-to sevenfold in epicardial transudate. 50 μM α, β-methylene adenosine 5′-diphosphate (AOPCP), a selective inhibitor of ecto 5′-nucleotidase, elevated interstitial AMP concentration tenfold, did not attenuate basal nucleoside release, but completely inhibited Mg2+-stimulated coronary venous purine nucleoside release and blunted Mg2+-stimulated interstitial purine nucleoside formation by 69%. During perfusion with exogenous 1 μM [8-14C]AMP, excess perfusate MgCl2 increased [14C]adenosine release by 63% in coronary effluent and 133% in epicardial transudate. AOPCP decreased baseline [14C]adenosine release in coronary effluent and epicardial transudate by 85-90%, caused equilibration of arterial and epicardial AMP, and attenuated MgCl2 activation of [14C]adenosine formation by approx. 75%, in both the vascular and interstitial compartments. Intramyocytic concentrations of allosteric regulators of the cytosolic 5′-nucleotidases were evaluated in stop-frozen myocardium. Excess magnesium did not appreciably alter intracellular pH and ATP concentration, but lowered free cytosolic ADP and AMP concentrations by 50 and 70%, respectively. A simplified model of compartmentalized adenosine metabolism is proposed in which magnesium ion-activated cardiac purine release originates predominantly from the ecto 5′-nucleotidase; magnesium ion stimulation of metabolic flux through the cytosolic isoforms was constrained by concomitant reductions in intracellular AMP substrate and allosteric activator ADP. Magnesium ion-enhanced adenosine formation by 5′-nucleotidase could contribute to the known cardioprotective effects of this clinically used cation.

AB - Magnesium ion is an allosteric effector of 5′-nucleotidase and thus activates adenosine production from AMP. Two distinct 5′-nucleotidase systems, the membrane-bound ecto and the soluble cytosolic isoforms, exist in mammalian myocardium. The aim of this study was to delineate the contributions of the ecto vs. cytosolic isoforms to Mg2+-stimulated cardiac purine nucleoside formation and release. Isolated guinea pig hearts were retrogradely perfused at their physiological aortic pressure with Krebs-Henseleit bicarbonate buffer fortified with 10 mM glucose. AMP and the adenylate degradatives adenosine and inosine were measured in coronary venous effluent and in epicardial transudate, which was sampled to estimate concentrations of adenylate degradatives in the interstitium. When perfusate Mg2+ was increased from 0.6 to 6 mM, coronary vascular resistance and spontaneous heart rate fell, and steady-state coronary venous release of adenosine + inosine rose severalfold. Cytosolic free magnesium, as estimated by 31P-NMR after 15 min of perfusion with 6 mM Mg2+ or from chemically measured indicator metabolites after 30 min, rose 60 and 144% respectively (P < 0.05). Excess Mg2+ stimulated purine nucleoside release nearly threefold in coronary venous effluent and four-to sevenfold in epicardial transudate. 50 μM α, β-methylene adenosine 5′-diphosphate (AOPCP), a selective inhibitor of ecto 5′-nucleotidase, elevated interstitial AMP concentration tenfold, did not attenuate basal nucleoside release, but completely inhibited Mg2+-stimulated coronary venous purine nucleoside release and blunted Mg2+-stimulated interstitial purine nucleoside formation by 69%. During perfusion with exogenous 1 μM [8-14C]AMP, excess perfusate MgCl2 increased [14C]adenosine release by 63% in coronary effluent and 133% in epicardial transudate. AOPCP decreased baseline [14C]adenosine release in coronary effluent and epicardial transudate by 85-90%, caused equilibration of arterial and epicardial AMP, and attenuated MgCl2 activation of [14C]adenosine formation by approx. 75%, in both the vascular and interstitial compartments. Intramyocytic concentrations of allosteric regulators of the cytosolic 5′-nucleotidases were evaluated in stop-frozen myocardium. Excess magnesium did not appreciably alter intracellular pH and ATP concentration, but lowered free cytosolic ADP and AMP concentrations by 50 and 70%, respectively. A simplified model of compartmentalized adenosine metabolism is proposed in which magnesium ion-activated cardiac purine release originates predominantly from the ecto 5′-nucleotidase; magnesium ion stimulation of metabolic flux through the cytosolic isoforms was constrained by concomitant reductions in intracellular AMP substrate and allosteric activator ADP. Magnesium ion-enhanced adenosine formation by 5′-nucleotidase could contribute to the known cardioprotective effects of this clinically used cation.

KW - (Guinea pig)

KW - (Heart)

KW - 5′-nucleotidase

KW - Adenosine

KW - AMP

KW - ATP phosphorylation potential

KW - Magnesium, free

KW - Myocardium

UR - http://www.scopus.com/inward/record.url?scp=0029974727&partnerID=8YFLogxK

U2 - 10.1016/0304-4165(96)00016-5

DO - 10.1016/0304-4165(96)00016-5

M3 - Article

C2 - 8645720

AN - SCOPUS:0029974727

VL - 1290

SP - 165

EP - 176

JO - Biochimica et Biophysica Acta - General Subjects

JF - Biochimica et Biophysica Acta - General Subjects

SN - 0304-4165

IS - 2

ER -