TY - JOUR
T1 - HIV-1 Tat induces microvascular endothelial apoptosis through caspase activation
AU - Park, I. W.
AU - Ullrich, C. K.
AU - Schoenberger, E.
AU - Ganju, R. K.
AU - Groopman, J. E.
PY - 2001/9/1
Y1 - 2001/9/1
N2 - HIV-1 Tat, in addition to its critical role in viral transcription, is secreted from infected cells and can act as a proto-cytokine. We studied the effects of HIV-1 Tat in primary human microvascular endothelial cells of lung origin and found that it caused apoptosis. This apoptosis occurred without induction of either Fas or TNF, known mediators of programmed cell death. Tat, like Fas ligand, induced cleavage of chromatin structure, as evidenced by changes in DNA laddering, incorporation of fluorescein into the nicked chromosomal DNA (TUNEL assay), and mono- or oligonucleosomes. Furthermore, Tat treatment caused cleavage of poly(A/DP)-ribose polymerase, a substrate of caspases. Caspase-3, but not caspase-9, was activated following treatment of primary human microvascular endothelial cells of lung origin with either Tat or anti-Fas agonist Ab (anti-Fas). Inhibition of caspase-3 activity markedly reduced apoptosis. Although Fas-mediated apoptosis involved changes in Bcl-2, Bax, and Bad regulatory proteins, such alterations were not observed with Tat. Taken together, these data demonstrate that HIV-1 Tat is able to activate apoptosis in microvascular endothelium by a mechanism distinct from TNF secretion or the Fas pathway.
AB - HIV-1 Tat, in addition to its critical role in viral transcription, is secreted from infected cells and can act as a proto-cytokine. We studied the effects of HIV-1 Tat in primary human microvascular endothelial cells of lung origin and found that it caused apoptosis. This apoptosis occurred without induction of either Fas or TNF, known mediators of programmed cell death. Tat, like Fas ligand, induced cleavage of chromatin structure, as evidenced by changes in DNA laddering, incorporation of fluorescein into the nicked chromosomal DNA (TUNEL assay), and mono- or oligonucleosomes. Furthermore, Tat treatment caused cleavage of poly(A/DP)-ribose polymerase, a substrate of caspases. Caspase-3, but not caspase-9, was activated following treatment of primary human microvascular endothelial cells of lung origin with either Tat or anti-Fas agonist Ab (anti-Fas). Inhibition of caspase-3 activity markedly reduced apoptosis. Although Fas-mediated apoptosis involved changes in Bcl-2, Bax, and Bad regulatory proteins, such alterations were not observed with Tat. Taken together, these data demonstrate that HIV-1 Tat is able to activate apoptosis in microvascular endothelium by a mechanism distinct from TNF secretion or the Fas pathway.
UR - http://www.scopus.com/inward/record.url?scp=0035451405&partnerID=8YFLogxK
U2 - 10.4049/jimmunol.167.5.2766
DO - 10.4049/jimmunol.167.5.2766
M3 - Article
C2 - 11509621
AN - SCOPUS:0035451405
SN - 0022-1767
VL - 167
SP - 2766
EP - 2771
JO - Journal of Immunology
JF - Journal of Immunology
IS - 5
ER -