TY - GEN
T1 - Heme-tryptophan relationships in hemoglobin explored by frequency-domain time-resolved fluorescence at 10-GHz resolution
AU - Bucci, Enrico
AU - Gryczynski, Zygmunt
AU - Gratton, Enrico
AU - Tenenholz, Todd
PY - 1992/1/1
Y1 - 1992/1/1
N2 - The time-resolved fluorescence spectroscopy of human and bovine oxy- and deoxyhemoglobins was measured in either 0.03 M phosphate buffer or 0.03 M borate buffer between pH 6.5 and 9.2. A frequency resolved fluorometer was used with bandwidth up to 10 GHz. Excitation was at 294 nm, the emission was monitored through a broad band interference filter centered at 335 nm, coupled to a cut-off filter at 316 nm. In all cases, the best simulations were obtained with two discrete exponential decays, one near 30 ps, and the other of several hundred ps. In human hemoglobin, the longer component showed a substantial lengthening upon removal of oxygen. In bovine hemoglobin, the shorter component decreased upon deoxygenation. It was possible to infer that the shorter lifetimes originated from the average intrachain distances. However, the hemes at this longer distance would become the main acceptors of energy transfer only when the energy transfer at intrasubunit distance is inhibited. It is suggested that this is due to the presence of `disordered' heme in the system.
AB - The time-resolved fluorescence spectroscopy of human and bovine oxy- and deoxyhemoglobins was measured in either 0.03 M phosphate buffer or 0.03 M borate buffer between pH 6.5 and 9.2. A frequency resolved fluorometer was used with bandwidth up to 10 GHz. Excitation was at 294 nm, the emission was monitored through a broad band interference filter centered at 335 nm, coupled to a cut-off filter at 316 nm. In all cases, the best simulations were obtained with two discrete exponential decays, one near 30 ps, and the other of several hundred ps. In human hemoglobin, the longer component showed a substantial lengthening upon removal of oxygen. In bovine hemoglobin, the shorter component decreased upon deoxygenation. It was possible to infer that the shorter lifetimes originated from the average intrachain distances. However, the hemes at this longer distance would become the main acceptors of energy transfer only when the energy transfer at intrasubunit distance is inhibited. It is suggested that this is due to the presence of `disordered' heme in the system.
UR - http://www.scopus.com/inward/record.url?scp=0026491384&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:0026491384
SN - 0819407860
T3 - Proceedings of SPIE - The International Society for Optical Engineering
SP - 784
EP - 791
BT - Proceedings of SPIE - The International Society for Optical Engineering
PB - Publ by Int Soc for Optical Engineering
Y2 - 20 January 1992 through 22 January 1992
ER -