TY - JOUR
T1 - Generation of functional multipotent adult stem cells from GPR125 + germline progenitors
AU - Seandel, Marco
AU - James, Daylon
AU - Shmelkov, Sergey V.
AU - Falciatori, Ilaria
AU - Kim, Jiyeon
AU - Chavala, Sai
AU - Scherr, Douglas S.
AU - Zhang, Fan
AU - Torres, Richard
AU - Gale, Nicholas W.
AU - Yancopoulos, George D.
AU - Murphy, Andrew
AU - Valenzuela, David M.
AU - Hobbs, Robin M.
AU - Pandolfi, Pier Paolo
AU - Rafii, Shahin
N1 - Funding Information:
Acknowledgements This work was supported by the Howard Hughes Medical Institute, Ansary Stem Cell Center for Regenerative Medicine and Memorial Sloan Kettering Cancer Center T32 grant (M.S.), an AACR–Genentech BioOncology Fellowship for Cancer Research on Angiogenesis (M.S.), the Heed Foundation (S.C.), the International Retinal Research Foundation (S.C.) and National Heart, Lung and Blood Institute grants (S.R.). We thank M. Hardy, P. Schlegel, Marc Goldstein, A. Brivanlou and S. Noggle for critical input. We are grateful to G. Enders for providing anti-GCNA antibody. We thank D. S. Johnston, G. Linkov and G. Zlotchenko for technical assistance.
PY - 2007/9/20
Y1 - 2007/9/20
N2 - Adult mammalian testis is a source of pluripotent stem cells. However, the lack of specific surface markers has hampered identification and tracking of the unrecognized subset of germ cells that gives rise to multipotent cells. Although embryonic-like cells can be derived from adult testis cultures after only several weeks in vitro, it is not known whether adult self-renewing spermatogonia in long-term culture can generate such stem cells as well. Here, we show that highly proliferative adult spermatogonial progenitor cells (SPCs) can be efficiently obtained by cultivation on mitotically inactivated testicular feeders containing CD34+ stromal cells. SPCs exhibit testicular repopulating activity in vivo and maintain the ability in long-term culture to give rise to multipotent adult spermatogonial-derived stem cells (MASCs). Furthermore, both SPCs and MASCs express GPR125, an orphan adhesion-type G-protein-coupled receptor. In knock-in mice bearing a GPR125-β- galactosidase (LacZ) fusion protein under control of the native Gpr125 promoter (GPR125-LacZ), expression in the testis was detected exclusively in spermatogonia and not in differentiated germ cells. Primary GPR125-LacZ SPC lines retained GPR125 expression, underwent clonal expansion, maintained the phenotype of germline stem cells, and reconstituted spermatogenesis in busulphan-treated mice. Long-term cultures of GPR125+ SPCs (GSPCs) also converted into GPR125+ MASC colonies. GPR125+ MASCs generated derivatives of the three germ layers and contributed to chimaeric embryos, with concomitant downregulation of GPR125 during differentiation into GPR125- cells. MASCs also differentiated into contractile cardiac tissue in vitro and formed functional blood vessels in vivo. Molecular bookmarking by GPR125 in the adult mouse and, ultimately, in the human testis could enrich for a population of SPCs for derivation of GPR125+ MASCs, which may be employed for genetic manipulation, tissue regeneration and revascularization of ischaemic organs.
AB - Adult mammalian testis is a source of pluripotent stem cells. However, the lack of specific surface markers has hampered identification and tracking of the unrecognized subset of germ cells that gives rise to multipotent cells. Although embryonic-like cells can be derived from adult testis cultures after only several weeks in vitro, it is not known whether adult self-renewing spermatogonia in long-term culture can generate such stem cells as well. Here, we show that highly proliferative adult spermatogonial progenitor cells (SPCs) can be efficiently obtained by cultivation on mitotically inactivated testicular feeders containing CD34+ stromal cells. SPCs exhibit testicular repopulating activity in vivo and maintain the ability in long-term culture to give rise to multipotent adult spermatogonial-derived stem cells (MASCs). Furthermore, both SPCs and MASCs express GPR125, an orphan adhesion-type G-protein-coupled receptor. In knock-in mice bearing a GPR125-β- galactosidase (LacZ) fusion protein under control of the native Gpr125 promoter (GPR125-LacZ), expression in the testis was detected exclusively in spermatogonia and not in differentiated germ cells. Primary GPR125-LacZ SPC lines retained GPR125 expression, underwent clonal expansion, maintained the phenotype of germline stem cells, and reconstituted spermatogenesis in busulphan-treated mice. Long-term cultures of GPR125+ SPCs (GSPCs) also converted into GPR125+ MASC colonies. GPR125+ MASCs generated derivatives of the three germ layers and contributed to chimaeric embryos, with concomitant downregulation of GPR125 during differentiation into GPR125- cells. MASCs also differentiated into contractile cardiac tissue in vitro and formed functional blood vessels in vivo. Molecular bookmarking by GPR125 in the adult mouse and, ultimately, in the human testis could enrich for a population of SPCs for derivation of GPR125+ MASCs, which may be employed for genetic manipulation, tissue regeneration and revascularization of ischaemic organs.
UR - http://www.scopus.com/inward/record.url?scp=34548844476&partnerID=8YFLogxK
U2 - 10.1038/nature06129
DO - 10.1038/nature06129
M3 - Article
C2 - 17882221
AN - SCOPUS:34548844476
SN - 0028-0836
VL - 449
SP - 346
EP - 350
JO - Nature
JF - Nature
IS - 7160
ER -