Abstract
The detection of DNA polymorphisms by RFLP analysis is having a major impact on identity testing in forensic science. At present, this approach is the best effort a forensic scientist can make to exclude an individual who has been falsely associated with an evidentiary sample found at a crime scene. When an analysis fails to exclude a suspect as a potential contributor of an evidentiary sample, a means should be provided to assess suitable weight to the putative match. Most important, the statistical analysis should not place undue weight on a genetic profile derived from an unknown sample that is attributed to an accused individual. The method must allow for limitations in conventional agarose-submarine-gel electrophoresis and Southern blotting procedure, limited sample population data, possible subpopulation differences, and potential sampling error. A conservative statistical method was developed based on arbitrarily defined fixed bins. This approach permits classification of continuous allelic data, provides for a simple and portable data-base system, and is unlikely to underestimate the frequency of occurrence of a set of alleles. This will help ensure that undue weight is not placed on a sample attributed to an accused individual.
Original language | English |
---|---|
Pages (from-to) | 841-855 |
Number of pages | 15 |
Journal | American Journal of Human Genetics |
Volume | 48 |
Issue number | 5 |
State | Published - 1991 |