TY - JOUR
T1 - Exosomes are unlikely involved in intercellular Nef transfer
AU - Luo, Xiaoyu
AU - Fan, Yan
AU - Park, In Woo
AU - He, Johnny J.
N1 - Publisher Copyright:
© 2015 Luo et al.
PY - 2015/4/28
Y1 - 2015/4/28
N2 - HIV-1 Nef is an important pathogenic factor for HIV/AIDS pathogenesis. Several recent studies including ours have demonstrated that Nef can be transferred to neighboring cells and alters the function of these cells. However, how the intercellular Nef transfer occurs is in dispute. In the current study, we attempted to address this important issue using several complementary strategies, a panel of exosomal markers, and human CD4+ T lymphocyte cell line Jurkat and a commonly used cell line 293T. First, we showed that Nef was transferred from Nef-expressing or HIV-infected Jurkat to naïve Jurkat and other non-Jurkat cells and that the transfer required the membrane targeting function of Nef and was cell densitydependent. Then, we showed that Nef transfer was cell-cell contact-dependent, as exposure to culture supernatants or exosomes from HIV-infected Jurkat or Nef-expressing Jurkat and 293T led to little Nef detection in the target cells Jurkat. Thirdly, we demonstrated that Nef was only detected to be associated with HIV virions but not with acetylcholinesterase (AChE+) exosomes from HIV-infected Jurkat and not in the exosomes from Nef-expressing Jurkat. In comparison, when it was over-expressed in 293T, Nef was detected in detergent-insoluble AChE+/CD81low/TSG101low exosomes, but not in detergent-soluble AChE-/CD81high/TSG101high exosomes. Lastly, microscopic imaging showed no significant Nef detection in exosomal vesicle-like structures in and out 293T. Taken together, these results show that exosomes are unlikely involved in intercellular Nef transfer. In addition, this study reveals existence of two types of exosomes: AChE+/CD81low/TSG101low exosomes and AChE-/CD81high/TSG101high exosomes.
AB - HIV-1 Nef is an important pathogenic factor for HIV/AIDS pathogenesis. Several recent studies including ours have demonstrated that Nef can be transferred to neighboring cells and alters the function of these cells. However, how the intercellular Nef transfer occurs is in dispute. In the current study, we attempted to address this important issue using several complementary strategies, a panel of exosomal markers, and human CD4+ T lymphocyte cell line Jurkat and a commonly used cell line 293T. First, we showed that Nef was transferred from Nef-expressing or HIV-infected Jurkat to naïve Jurkat and other non-Jurkat cells and that the transfer required the membrane targeting function of Nef and was cell densitydependent. Then, we showed that Nef transfer was cell-cell contact-dependent, as exposure to culture supernatants or exosomes from HIV-infected Jurkat or Nef-expressing Jurkat and 293T led to little Nef detection in the target cells Jurkat. Thirdly, we demonstrated that Nef was only detected to be associated with HIV virions but not with acetylcholinesterase (AChE+) exosomes from HIV-infected Jurkat and not in the exosomes from Nef-expressing Jurkat. In comparison, when it was over-expressed in 293T, Nef was detected in detergent-insoluble AChE+/CD81low/TSG101low exosomes, but not in detergent-soluble AChE-/CD81high/TSG101high exosomes. Lastly, microscopic imaging showed no significant Nef detection in exosomal vesicle-like structures in and out 293T. Taken together, these results show that exosomes are unlikely involved in intercellular Nef transfer. In addition, this study reveals existence of two types of exosomes: AChE+/CD81low/TSG101low exosomes and AChE-/CD81high/TSG101high exosomes.
UR - http://www.scopus.com/inward/record.url?scp=84928810795&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0124436
DO - 10.1371/journal.pone.0124436
M3 - Article
C2 - 25919665
AN - SCOPUS:84928810795
SN - 1932-6203
VL - 10
JO - PLoS ONE
JF - PLoS ONE
IS - 4
M1 - e0124436
ER -