Estrogen attenuates nuclear factor-kappa B activation induced by transient cerebral ischemia

Yi Wen, Shaohua Yang, Ran Liu, Evelyn Perez, Kun Don Yi, Peter Koulen, James W. Simpkins

Research output: Contribution to journalArticlepeer-review

141 Scopus citations


The protective effects of estrogens have been widely reported in a number of animal and cell culture models, but the molecular mechanisms of this potent neuroprotective activity are not well understood. Both in vitro and in vivo studies indicate that in the central nervous system and peripheral tissues, estrogen treatment reduces cytokine production and inflammatory responses. Nuclear factor-kappa B (NFκB) plays an essential role in the regulation of post-ischemic inflammation, which is detrimental to recovery from an ischemic stroke. We investigated the role of NFκB in neuronal survival in rats that received transient middle cerebral artery (MCA) occlusion, and observed that this transient cerebral ischemia induced substantial apoptosis and inflammatory responses, including IκB phosphorylation, NF-κB activation and iNOS over-expression. 17 β-estradiol (E2) treatment produced strong protective effects by reducing infarct volume, neuronal apoptosis, and inflammatory responses. These findings provide evidence for a novel molecular and cellular interaction between the sex hormone and the immunoresponsive system. These studies also provide evidence that suppression of post-ischemic inflammation may play a critical role in estrogen-mediated neuroprotection.

Original languageEnglish
Pages (from-to)147-154
Number of pages8
JournalBrain Research
Issue number2
StatePublished - 22 May 2004


  • Disorders of the nervous system
  • Estrogen
  • Ischemia
  • NF-κB
  • Neuroprotection
  • Post-ischemic inflammation
  • Stroke


Dive into the research topics of 'Estrogen attenuates nuclear factor-kappa B activation induced by transient cerebral ischemia'. Together they form a unique fingerprint.

Cite this