Abstract
Rho family GTPases modulate actin cytoskeleton dynamics by signaling through multiple effectors, including the p21-activated kinases (PAKs). The intestinal parasite Entamoeba histolytica expresses ∼20 Rho family GTPases and seven isoforms of PAK, two of which have been implicated in pathogenesis-related processes such as amoebic motility and invasion and host cell phagocytosis. Here, we describe two previously unstudied PAK isoforms, EhPAK4 and EhPAK5, as highly specific effectors of EhRacC. A structural model based on 2.35 Å X-ray crystallographic data of a complex between EhRacCQ65L·GTP and the EhPAK4 p21 binding domain (PBD) reveals a fairly well-conserved Rho/effector interface despite deviation of the PBD α-helix. A structural comparison with EhRho1 in complex with EhFormin1 suggests likely determinants of Rho family GTPase signaling specificity in E. histolytica. These findings suggest a high degree of Rho family GTPase diversity and specificity in the single-cell parasite E. histolytica. Because PAKs regulate pathogenesis-related processes in E. histolytica, they may be valid pharmacologic targets for anti-amoebiasis drugs.
Original language | English |
---|---|
Pages (from-to) | 404-412 |
Number of pages | 9 |
Journal | Biochemistry |
Volume | 54 |
Issue number | 2 |
DOIs | |
State | Published - 20 Jan 2015 |