Enhanced cerebral perfusion during brief exposures to cyclic intermittent hypoxemia

Xiaoli Liu, Diqun Xu, James R. Hall, Sarah Elizabeth Ross, Shande Chen, Hao Liu, Robert T. Mallet, Xiangrong Shi

Research output: Contribution to journalArticleResearchpeer-review

Abstract

Cerebral vasodilation and increased cerebral oxygen extraction help maintain cerebral oxygen uptake in the face of hypoxemia. This study examined cerebrovascular responses to intermittent hypoxemia in eight healthy men breathing 10% O2 for 5 cycles, each 6 min, interspersed with 4 min of room air breathing. Hypoxia exposures raised heart rate ( P < 0.01) without altering arterial pressure, and increased ventilation ( P < 0.01) by expanding tidal volume. Arterial oxygen saturation ([Formula: see text]) and cerebral tissue oxygenation ([Formula: see text]) fell ( P < 0.01) less appreciably in the first bout (from 97.0 ± 0.3% and 72.8 ± 1.6% to 75.5 ± 0.9% and 54.5 ± 0.9%, respectively) than the fifth bout (from 94.9 ± 0.4% and 70.8 ± 1.0% to 66.7 ± 2.3% and 49.2 ± 1.5%, respectively). Flow velocity in the middle cerebral artery ( VMCA) and cerebrovascular conductance increased in a sigmoid fashion with decreases in [Formula: see text] and [Formula: see text]. These stimulus-response curves shifted leftward and upward from the first to the fifth hypoxia bouts; thus, the centering points fell from 79.2 ± 1.4 to 74.6 ± 1.1% ( P = 0.01) and from 59.8 ± 1.0 to 56.6 ± 0.3% ( P = 0.002), and the minimum VMCA increased from 54.0 ± 0.5 to 57.2 ± 0.5 cm/s ( P = 0.0001) and from 53.9 ± 0.5 to 57.1 ± 0.3 cm/s ( P = 0.0001) for the [Formula: see text]- VMCA and [Formula: see text]- VMCA curves, respectively. Cerebral oxygen extraction increased from prehypoxia 0.22 ± 0.01 to 0.25 ± 0.02 in minute 6 of the first hypoxia bout, and remained elevated between 0.25 ± 0.01 and 0.27 ± 0.01 throughout the fifth hypoxia bout. These results demonstrate that cerebral vasodilation combined with enhanced cerebral oxygen extraction fully compensated for decreased oxygen content during acute, cyclic hypoxemia. NEW & NOTEWORTHY Five bouts of 6-min intermittent hypoxia (IH) exposures to 10% O2 progressively reduce arterial oxygen saturation ([Formula: see text]) to 67% without causing discomfort or distress. Cerebrovascular responses to hypoxemia are dynamically reset over the course of a single IH session, such that threshold and saturation for cerebral vasodilations occurred at lower [Formula: see text] and cerebral tissue oxygenation ([Formula: see text]) during the fifth vs. first hypoxia bouts. Cerebral oxygen extraction is augmented during acute hypoxemia, which compensates for decreased arterial O2 content.

Original languageEnglish
Pages (from-to)1689-1697
Number of pages9
JournalJournal of applied physiology (Bethesda, Md. : 1985)
Volume123
Issue number6
DOIs
StatePublished - 1 Dec 2017

Fingerprint

Perfusion
Oxygen
Middle Cerebral Artery
Vasodilation
Hypoxia
Respiration
Tidal Volume
Sigmoid Colon
Ventilation
Arterial Pressure
Heart Rate
Air

Keywords

  • arterial blood pressure
  • arterial oxygen saturation
  • cerebral blood flow velocity
  • cerebral tissue oxygenation
  • heart rate
  • intermittent hypoxia

Cite this

@article{4287f4e5d89b416ba7f32724dac70dad,
title = "Enhanced cerebral perfusion during brief exposures to cyclic intermittent hypoxemia",
abstract = "Cerebral vasodilation and increased cerebral oxygen extraction help maintain cerebral oxygen uptake in the face of hypoxemia. This study examined cerebrovascular responses to intermittent hypoxemia in eight healthy men breathing 10{\%} O2 for 5 cycles, each 6 min, interspersed with 4 min of room air breathing. Hypoxia exposures raised heart rate ( P < 0.01) without altering arterial pressure, and increased ventilation ( P < 0.01) by expanding tidal volume. Arterial oxygen saturation ([Formula: see text]) and cerebral tissue oxygenation ([Formula: see text]) fell ( P < 0.01) less appreciably in the first bout (from 97.0 ± 0.3{\%} and 72.8 ± 1.6{\%} to 75.5 ± 0.9{\%} and 54.5 ± 0.9{\%}, respectively) than the fifth bout (from 94.9 ± 0.4{\%} and 70.8 ± 1.0{\%} to 66.7 ± 2.3{\%} and 49.2 ± 1.5{\%}, respectively). Flow velocity in the middle cerebral artery ( VMCA) and cerebrovascular conductance increased in a sigmoid fashion with decreases in [Formula: see text] and [Formula: see text]. These stimulus-response curves shifted leftward and upward from the first to the fifth hypoxia bouts; thus, the centering points fell from 79.2 ± 1.4 to 74.6 ± 1.1{\%} ( P = 0.01) and from 59.8 ± 1.0 to 56.6 ± 0.3{\%} ( P = 0.002), and the minimum VMCA increased from 54.0 ± 0.5 to 57.2 ± 0.5 cm/s ( P = 0.0001) and from 53.9 ± 0.5 to 57.1 ± 0.3 cm/s ( P = 0.0001) for the [Formula: see text]- VMCA and [Formula: see text]- VMCA curves, respectively. Cerebral oxygen extraction increased from prehypoxia 0.22 ± 0.01 to 0.25 ± 0.02 in minute 6 of the first hypoxia bout, and remained elevated between 0.25 ± 0.01 and 0.27 ± 0.01 throughout the fifth hypoxia bout. These results demonstrate that cerebral vasodilation combined with enhanced cerebral oxygen extraction fully compensated for decreased oxygen content during acute, cyclic hypoxemia. NEW & NOTEWORTHY Five bouts of 6-min intermittent hypoxia (IH) exposures to 10{\%} O2 progressively reduce arterial oxygen saturation ([Formula: see text]) to 67{\%} without causing discomfort or distress. Cerebrovascular responses to hypoxemia are dynamically reset over the course of a single IH session, such that threshold and saturation for cerebral vasodilations occurred at lower [Formula: see text] and cerebral tissue oxygenation ([Formula: see text]) during the fifth vs. first hypoxia bouts. Cerebral oxygen extraction is augmented during acute hypoxemia, which compensates for decreased arterial O2 content.",
keywords = "arterial blood pressure, arterial oxygen saturation, cerebral blood flow velocity, cerebral tissue oxygenation, heart rate, intermittent hypoxia",
author = "Xiaoli Liu and Diqun Xu and Hall, {James R.} and Ross, {Sarah Elizabeth} and Shande Chen and Hao Liu and Mallet, {Robert T.} and Xiangrong Shi",
year = "2017",
month = "12",
day = "1",
doi = "10.1152/japplphysiol.00647.2017",
language = "English",
volume = "123",
pages = "1689--1697",
journal = "Journal of Applied Physiology",
issn = "8750-7587",
publisher = "American Physiological Society",
number = "6",

}

Enhanced cerebral perfusion during brief exposures to cyclic intermittent hypoxemia. / Liu, Xiaoli; Xu, Diqun; Hall, James R.; Ross, Sarah Elizabeth; Chen, Shande; Liu, Hao; Mallet, Robert T.; Shi, Xiangrong.

In: Journal of applied physiology (Bethesda, Md. : 1985), Vol. 123, No. 6, 01.12.2017, p. 1689-1697.

Research output: Contribution to journalArticleResearchpeer-review

TY - JOUR

T1 - Enhanced cerebral perfusion during brief exposures to cyclic intermittent hypoxemia

AU - Liu, Xiaoli

AU - Xu, Diqun

AU - Hall, James R.

AU - Ross, Sarah Elizabeth

AU - Chen, Shande

AU - Liu, Hao

AU - Mallet, Robert T.

AU - Shi, Xiangrong

PY - 2017/12/1

Y1 - 2017/12/1

N2 - Cerebral vasodilation and increased cerebral oxygen extraction help maintain cerebral oxygen uptake in the face of hypoxemia. This study examined cerebrovascular responses to intermittent hypoxemia in eight healthy men breathing 10% O2 for 5 cycles, each 6 min, interspersed with 4 min of room air breathing. Hypoxia exposures raised heart rate ( P < 0.01) without altering arterial pressure, and increased ventilation ( P < 0.01) by expanding tidal volume. Arterial oxygen saturation ([Formula: see text]) and cerebral tissue oxygenation ([Formula: see text]) fell ( P < 0.01) less appreciably in the first bout (from 97.0 ± 0.3% and 72.8 ± 1.6% to 75.5 ± 0.9% and 54.5 ± 0.9%, respectively) than the fifth bout (from 94.9 ± 0.4% and 70.8 ± 1.0% to 66.7 ± 2.3% and 49.2 ± 1.5%, respectively). Flow velocity in the middle cerebral artery ( VMCA) and cerebrovascular conductance increased in a sigmoid fashion with decreases in [Formula: see text] and [Formula: see text]. These stimulus-response curves shifted leftward and upward from the first to the fifth hypoxia bouts; thus, the centering points fell from 79.2 ± 1.4 to 74.6 ± 1.1% ( P = 0.01) and from 59.8 ± 1.0 to 56.6 ± 0.3% ( P = 0.002), and the minimum VMCA increased from 54.0 ± 0.5 to 57.2 ± 0.5 cm/s ( P = 0.0001) and from 53.9 ± 0.5 to 57.1 ± 0.3 cm/s ( P = 0.0001) for the [Formula: see text]- VMCA and [Formula: see text]- VMCA curves, respectively. Cerebral oxygen extraction increased from prehypoxia 0.22 ± 0.01 to 0.25 ± 0.02 in minute 6 of the first hypoxia bout, and remained elevated between 0.25 ± 0.01 and 0.27 ± 0.01 throughout the fifth hypoxia bout. These results demonstrate that cerebral vasodilation combined with enhanced cerebral oxygen extraction fully compensated for decreased oxygen content during acute, cyclic hypoxemia. NEW & NOTEWORTHY Five bouts of 6-min intermittent hypoxia (IH) exposures to 10% O2 progressively reduce arterial oxygen saturation ([Formula: see text]) to 67% without causing discomfort or distress. Cerebrovascular responses to hypoxemia are dynamically reset over the course of a single IH session, such that threshold and saturation for cerebral vasodilations occurred at lower [Formula: see text] and cerebral tissue oxygenation ([Formula: see text]) during the fifth vs. first hypoxia bouts. Cerebral oxygen extraction is augmented during acute hypoxemia, which compensates for decreased arterial O2 content.

AB - Cerebral vasodilation and increased cerebral oxygen extraction help maintain cerebral oxygen uptake in the face of hypoxemia. This study examined cerebrovascular responses to intermittent hypoxemia in eight healthy men breathing 10% O2 for 5 cycles, each 6 min, interspersed with 4 min of room air breathing. Hypoxia exposures raised heart rate ( P < 0.01) without altering arterial pressure, and increased ventilation ( P < 0.01) by expanding tidal volume. Arterial oxygen saturation ([Formula: see text]) and cerebral tissue oxygenation ([Formula: see text]) fell ( P < 0.01) less appreciably in the first bout (from 97.0 ± 0.3% and 72.8 ± 1.6% to 75.5 ± 0.9% and 54.5 ± 0.9%, respectively) than the fifth bout (from 94.9 ± 0.4% and 70.8 ± 1.0% to 66.7 ± 2.3% and 49.2 ± 1.5%, respectively). Flow velocity in the middle cerebral artery ( VMCA) and cerebrovascular conductance increased in a sigmoid fashion with decreases in [Formula: see text] and [Formula: see text]. These stimulus-response curves shifted leftward and upward from the first to the fifth hypoxia bouts; thus, the centering points fell from 79.2 ± 1.4 to 74.6 ± 1.1% ( P = 0.01) and from 59.8 ± 1.0 to 56.6 ± 0.3% ( P = 0.002), and the minimum VMCA increased from 54.0 ± 0.5 to 57.2 ± 0.5 cm/s ( P = 0.0001) and from 53.9 ± 0.5 to 57.1 ± 0.3 cm/s ( P = 0.0001) for the [Formula: see text]- VMCA and [Formula: see text]- VMCA curves, respectively. Cerebral oxygen extraction increased from prehypoxia 0.22 ± 0.01 to 0.25 ± 0.02 in minute 6 of the first hypoxia bout, and remained elevated between 0.25 ± 0.01 and 0.27 ± 0.01 throughout the fifth hypoxia bout. These results demonstrate that cerebral vasodilation combined with enhanced cerebral oxygen extraction fully compensated for decreased oxygen content during acute, cyclic hypoxemia. NEW & NOTEWORTHY Five bouts of 6-min intermittent hypoxia (IH) exposures to 10% O2 progressively reduce arterial oxygen saturation ([Formula: see text]) to 67% without causing discomfort or distress. Cerebrovascular responses to hypoxemia are dynamically reset over the course of a single IH session, such that threshold and saturation for cerebral vasodilations occurred at lower [Formula: see text] and cerebral tissue oxygenation ([Formula: see text]) during the fifth vs. first hypoxia bouts. Cerebral oxygen extraction is augmented during acute hypoxemia, which compensates for decreased arterial O2 content.

KW - arterial blood pressure

KW - arterial oxygen saturation

KW - cerebral blood flow velocity

KW - cerebral tissue oxygenation

KW - heart rate

KW - intermittent hypoxia

UR - http://www.scopus.com/inward/record.url?scp=85051282095&partnerID=8YFLogxK

U2 - 10.1152/japplphysiol.00647.2017

DO - 10.1152/japplphysiol.00647.2017

M3 - Article

VL - 123

SP - 1689

EP - 1697

JO - Journal of Applied Physiology

JF - Journal of Applied Physiology

SN - 8750-7587

IS - 6

ER -