Development of a fingerprinting panel using medically relevant polymorphisms

Deanna S. Cross, Lynn C. Ivacic, Catherine A. McCarty

Research output: Contribution to journalArticle

8 Citations (Scopus)

Abstract

Background. For population based biorepositories to be of use, rigorous quality control and assurance must be maintained. We have designed and validated a panel of polymorphisms for individual sample identification consisting of 36 common polymorphisms that have been implicated in a wide range of diseases and an additional sex marker. This panel uniquely identifies our biorepository of approximately 20,000 samples and would continue to uniquely identify samples in biorepositories of over 100 million samples. Methods. A panel of polymorphisms associated with at least one disease state in multiple populations was constructed using a cut-off of 0.20 or greater confirmed minor allele frequency in a European Caucasian population. The fingerprinting assay was tested using the MALDI-TOF mass spectrometry method of allele determination on a Sequenom platform with a panel of 28 Caucasian HapMap samples; the results were compared with known genotypes to ensure accuracy. The frequencies of the alleles were compared to the expected frequencies from dbSNP and any genotype that did not achieve Hardy Weinberg equilibrium was excluded from the final assay. Results. The final assay consisted of the AMG sex marker and 36 medically relevant polymorphisms with representation on each chromosome, encompassing polymorphisms on both the Illumina 550K bead array and the Affymetrix 6.0 chip (with over a million polymorphisms) platform. The validated assay has a P(ID) of 6.132 × 10-15and a Psib(ID) of 3.077 × 10-8. This assay allows unique identification of our biorepository of 20,000 individuals as well and ensures that as we continue to recruit individuals they can be uniquely fingerprinted. In addition, diseases such as cancer, heart disease diabetes, obesity, and respiratory disease are well represented in the fingerprinting assay. Conclusion. The polymorphisms in this panel are currently represented on a number of common genotyping platforms making QA/QC flexible enough to accommodate a large number of studies. In addition, this panel can serve as a resource for investigators who are interested in the effects of disease in a population, particularly for common diseases.

Original languageEnglish
Article number17
JournalBMC Medical Genomics
Volume2
DOIs
StatePublished - 8 Jun 2009

Fingerprint

Gene Frequency
Population
Genotype
HapMap Project
Matrix-Assisted Laser Desorption-Ionization Mass Spectrometry
Quality Control
Heart Diseases
Mass Spectrometry
Obesity
Chromosomes
Alleles
Research Personnel
Neoplasms

Cite this

@article{f9af020611f64b7d87cb66f9147ee856,
title = "Development of a fingerprinting panel using medically relevant polymorphisms",
abstract = "Background. For population based biorepositories to be of use, rigorous quality control and assurance must be maintained. We have designed and validated a panel of polymorphisms for individual sample identification consisting of 36 common polymorphisms that have been implicated in a wide range of diseases and an additional sex marker. This panel uniquely identifies our biorepository of approximately 20,000 samples and would continue to uniquely identify samples in biorepositories of over 100 million samples. Methods. A panel of polymorphisms associated with at least one disease state in multiple populations was constructed using a cut-off of 0.20 or greater confirmed minor allele frequency in a European Caucasian population. The fingerprinting assay was tested using the MALDI-TOF mass spectrometry method of allele determination on a Sequenom platform with a panel of 28 Caucasian HapMap samples; the results were compared with known genotypes to ensure accuracy. The frequencies of the alleles were compared to the expected frequencies from dbSNP and any genotype that did not achieve Hardy Weinberg equilibrium was excluded from the final assay. Results. The final assay consisted of the AMG sex marker and 36 medically relevant polymorphisms with representation on each chromosome, encompassing polymorphisms on both the Illumina 550K bead array and the Affymetrix 6.0 chip (with over a million polymorphisms) platform. The validated assay has a P(ID) of 6.132 × 10-15and a Psib(ID) of 3.077 × 10-8. This assay allows unique identification of our biorepository of 20,000 individuals as well and ensures that as we continue to recruit individuals they can be uniquely fingerprinted. In addition, diseases such as cancer, heart disease diabetes, obesity, and respiratory disease are well represented in the fingerprinting assay. Conclusion. The polymorphisms in this panel are currently represented on a number of common genotyping platforms making QA/QC flexible enough to accommodate a large number of studies. In addition, this panel can serve as a resource for investigators who are interested in the effects of disease in a population, particularly for common diseases.",
author = "Cross, {Deanna S.} and Ivacic, {Lynn C.} and McCarty, {Catherine A.}",
year = "2009",
month = "6",
day = "8",
doi = "10.1186/1755-8794-2-17",
language = "English",
volume = "2",
journal = "BMC Medical Genomics",
issn = "1755-8794",
publisher = "BioMed Central Ltd.",

}

Development of a fingerprinting panel using medically relevant polymorphisms. / Cross, Deanna S.; Ivacic, Lynn C.; McCarty, Catherine A.

In: BMC Medical Genomics, Vol. 2, 17, 08.06.2009.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Development of a fingerprinting panel using medically relevant polymorphisms

AU - Cross, Deanna S.

AU - Ivacic, Lynn C.

AU - McCarty, Catherine A.

PY - 2009/6/8

Y1 - 2009/6/8

N2 - Background. For population based biorepositories to be of use, rigorous quality control and assurance must be maintained. We have designed and validated a panel of polymorphisms for individual sample identification consisting of 36 common polymorphisms that have been implicated in a wide range of diseases and an additional sex marker. This panel uniquely identifies our biorepository of approximately 20,000 samples and would continue to uniquely identify samples in biorepositories of over 100 million samples. Methods. A panel of polymorphisms associated with at least one disease state in multiple populations was constructed using a cut-off of 0.20 or greater confirmed minor allele frequency in a European Caucasian population. The fingerprinting assay was tested using the MALDI-TOF mass spectrometry method of allele determination on a Sequenom platform with a panel of 28 Caucasian HapMap samples; the results were compared with known genotypes to ensure accuracy. The frequencies of the alleles were compared to the expected frequencies from dbSNP and any genotype that did not achieve Hardy Weinberg equilibrium was excluded from the final assay. Results. The final assay consisted of the AMG sex marker and 36 medically relevant polymorphisms with representation on each chromosome, encompassing polymorphisms on both the Illumina 550K bead array and the Affymetrix 6.0 chip (with over a million polymorphisms) platform. The validated assay has a P(ID) of 6.132 × 10-15and a Psib(ID) of 3.077 × 10-8. This assay allows unique identification of our biorepository of 20,000 individuals as well and ensures that as we continue to recruit individuals they can be uniquely fingerprinted. In addition, diseases such as cancer, heart disease diabetes, obesity, and respiratory disease are well represented in the fingerprinting assay. Conclusion. The polymorphisms in this panel are currently represented on a number of common genotyping platforms making QA/QC flexible enough to accommodate a large number of studies. In addition, this panel can serve as a resource for investigators who are interested in the effects of disease in a population, particularly for common diseases.

AB - Background. For population based biorepositories to be of use, rigorous quality control and assurance must be maintained. We have designed and validated a panel of polymorphisms for individual sample identification consisting of 36 common polymorphisms that have been implicated in a wide range of diseases and an additional sex marker. This panel uniquely identifies our biorepository of approximately 20,000 samples and would continue to uniquely identify samples in biorepositories of over 100 million samples. Methods. A panel of polymorphisms associated with at least one disease state in multiple populations was constructed using a cut-off of 0.20 or greater confirmed minor allele frequency in a European Caucasian population. The fingerprinting assay was tested using the MALDI-TOF mass spectrometry method of allele determination on a Sequenom platform with a panel of 28 Caucasian HapMap samples; the results were compared with known genotypes to ensure accuracy. The frequencies of the alleles were compared to the expected frequencies from dbSNP and any genotype that did not achieve Hardy Weinberg equilibrium was excluded from the final assay. Results. The final assay consisted of the AMG sex marker and 36 medically relevant polymorphisms with representation on each chromosome, encompassing polymorphisms on both the Illumina 550K bead array and the Affymetrix 6.0 chip (with over a million polymorphisms) platform. The validated assay has a P(ID) of 6.132 × 10-15and a Psib(ID) of 3.077 × 10-8. This assay allows unique identification of our biorepository of 20,000 individuals as well and ensures that as we continue to recruit individuals they can be uniquely fingerprinted. In addition, diseases such as cancer, heart disease diabetes, obesity, and respiratory disease are well represented in the fingerprinting assay. Conclusion. The polymorphisms in this panel are currently represented on a number of common genotyping platforms making QA/QC flexible enough to accommodate a large number of studies. In addition, this panel can serve as a resource for investigators who are interested in the effects of disease in a population, particularly for common diseases.

UR - http://www.scopus.com/inward/record.url?scp=66249147911&partnerID=8YFLogxK

U2 - 10.1186/1755-8794-2-17

DO - 10.1186/1755-8794-2-17

M3 - Article

C2 - 19379518

AN - SCOPUS:66249147911

VL - 2

JO - BMC Medical Genomics

JF - BMC Medical Genomics

SN - 1755-8794

M1 - 17

ER -