TY - JOUR
T1 - Connective tissue growth factor is increased in pseudoexfoliation glaucoma
AU - Browne, John G.
AU - Ho, Su Ling
AU - Kane, Rosemary
AU - Oliver, Noelynn
AU - Clark, Abbot F.
AU - O'Brien, Colm J.
AU - Crean, John K.
PY - 2011/5
Y1 - 2011/5
N2 - Purpose. Pseudoexfoliation (PXF) syndrome is a generalized disorder of the extracellular matrix (ECM) involving the trabecular meshwork (TM), associated with raised intraocular pressure, glaucoma, and cataract. The purposes of this study were to quantify aqueous humor connective tissue growth factor (CTGF) in PXF glaucoma, to determine the effect of CTGF on ECM production in TM cells, and to identify intracellular CTGF signaling pathways. Methods. Aqueous humor samples were obtained from patients undergoing routine cataract surgery or trabeculectomy. CTGF levels were quantified by ELISA. The effect of CTGF on fibrillin-1 expression in TM cells was investigated by real-time PCR. Western immunoblot analysis was used to investigate CTGF signaling. c-Jun/AP-1 activation was measured in CHO cells by ELISA after stimulation with CTGF. Results. PXF with glaucoma had the highest aqueous humor level of CTGF (n = 18; 5.15 ± 0.79 ng/mL [SEM]; P < 0.01) compared with PXF without glaucoma (n = 15; 2.76 ± 0.64 ng/mL), primary open-angle glaucoma (POAG; n = 20; 3.05 ± 0.40 ng/mL), and the control (n = 21; 2.60 ± 0.29 ng/mL). In vitro exposure of TM cells to CTGF resulted in a 50% upregulation of fibrillin-1, which was partially blocked with the MEK (mitogen-activated protein extracellular kinase) inhibitor PD098059. Western blot analysis demonstrated increased phosphorylation of p42/44 MAPK, p38 MAPK, and the JNK pathways in response to CTGF. c-Jun/AP-1 activity was significantly increased in response to CTGF treatment. Conclusions. Increased levels of CTGF in the aqueous humor of PXF patients likely has pathologic significance through increased production of fibrillin-1 by TM cells through activation of p42/44 MAPK, p38 MAPK, and JNK pathways.
AB - Purpose. Pseudoexfoliation (PXF) syndrome is a generalized disorder of the extracellular matrix (ECM) involving the trabecular meshwork (TM), associated with raised intraocular pressure, glaucoma, and cataract. The purposes of this study were to quantify aqueous humor connective tissue growth factor (CTGF) in PXF glaucoma, to determine the effect of CTGF on ECM production in TM cells, and to identify intracellular CTGF signaling pathways. Methods. Aqueous humor samples were obtained from patients undergoing routine cataract surgery or trabeculectomy. CTGF levels were quantified by ELISA. The effect of CTGF on fibrillin-1 expression in TM cells was investigated by real-time PCR. Western immunoblot analysis was used to investigate CTGF signaling. c-Jun/AP-1 activation was measured in CHO cells by ELISA after stimulation with CTGF. Results. PXF with glaucoma had the highest aqueous humor level of CTGF (n = 18; 5.15 ± 0.79 ng/mL [SEM]; P < 0.01) compared with PXF without glaucoma (n = 15; 2.76 ± 0.64 ng/mL), primary open-angle glaucoma (POAG; n = 20; 3.05 ± 0.40 ng/mL), and the control (n = 21; 2.60 ± 0.29 ng/mL). In vitro exposure of TM cells to CTGF resulted in a 50% upregulation of fibrillin-1, which was partially blocked with the MEK (mitogen-activated protein extracellular kinase) inhibitor PD098059. Western blot analysis demonstrated increased phosphorylation of p42/44 MAPK, p38 MAPK, and the JNK pathways in response to CTGF. c-Jun/AP-1 activity was significantly increased in response to CTGF treatment. Conclusions. Increased levels of CTGF in the aqueous humor of PXF patients likely has pathologic significance through increased production of fibrillin-1 by TM cells through activation of p42/44 MAPK, p38 MAPK, and JNK pathways.
UR - http://www.scopus.com/inward/record.url?scp=80051759184&partnerID=8YFLogxK
U2 - 10.1167/iovs.10-5209
DO - 10.1167/iovs.10-5209
M3 - Article
C2 - 21330667
AN - SCOPUS:80051759184
SN - 0146-0404
VL - 52
SP - 3660
EP - 3666
JO - Investigative Ophthalmology and Visual Science
JF - Investigative Ophthalmology and Visual Science
IS - 6
ER -