Combining remote ischemic preconditioning and aerobic exercise

A novel adaptation of blood flow restriction exercise

Justin D. Sprick, Caroline Alice Rickards

Research output: Contribution to journalArticleResearchpeer-review

4 Citations (Scopus)

Abstract

Remote ischemic preconditioning (RIPC) can attenuate tissue damage sustained by ischemia-reperfusion injury. Blood flow restriction exercise (BFRE) restricts blood flow to exercising muscles. We implemented a novel approach to BFRE with cyclical bouts of blood flow restriction-reperfusion, reflecting the RIPC model. A concern about BFRE, however, is potential amplification of the exercise pressor reflex, which could be unsafe in at-risk populations. We hypothesized that cyclical BFRE would elicit greater increases in sympathetic outflow and arterial pressure than conventional exercise (CE) when performed at the same relative intensity. We also assessed the cerebrovascular responses due to potential implementation of BFRE in stroke rehabilitation. Fourteen subjects performed treadmill exercise at 65–70% maximal heart rate with and without intermittent BFR (4 × 5-min intervals of bilateral thigh-cuff pressure followed by 5-min reperfusion periods). Mean arterial pressure (MAP), plasma norepinephrine (NE), and middle and posterior cerebral artery velocities (MCAv and PCAv) were compared between trials. As expected, BFRE elicited higher concentration NE compared with CE (1249 ± 170 vs. 962 ± 114 pg/ml; P = 0.06). Unexpectedly, however, there were no differences in MAP between conditions (overall P = 0.33), and MAP was 4–5 mmHg lower with BFRE versus CE during the reperfusion periods (P ≤ 0.05 for reperfusion periods 3 and 4). There were no differences in MCAv or PCAv between trials (P ≤ 0.22), suggesting equivalent cerebrometabolic demand. The exaggerated sympathoexcitatory response with BFRE was not accompanied by higher MAP, likely because of the cyclical reperfusions. This cyclical BFRE paradigm could be adapted to cardiac or stroke rehabilitation, where exercising patients could benefit from the cardio and cerebro protection associated with RIPC.

Original languageEnglish
Pages (from-to)R497-R506
JournalAmerican Journal of Physiology - Regulatory Integrative and Comparative Physiology
Volume313
Issue number5
DOIs
StatePublished - 1 Nov 2017

Fingerprint

Ischemic Preconditioning
Exercise
Reperfusion
Arterial Pressure
Norepinephrine
Posterior Cerebral Artery
Middle Cerebral Artery
Thigh
Reperfusion Injury
Reflex
Heart Rate

Keywords

  • Exercise for cardiac rehabilitation
  • Exercise for stroke rehabilitation
  • KAATSU
  • Vascular occlusion training

Cite this

@article{e7a1ee3dabb349659a8b7fee331ad5a3,
title = "Combining remote ischemic preconditioning and aerobic exercise: A novel adaptation of blood flow restriction exercise",
abstract = "Remote ischemic preconditioning (RIPC) can attenuate tissue damage sustained by ischemia-reperfusion injury. Blood flow restriction exercise (BFRE) restricts blood flow to exercising muscles. We implemented a novel approach to BFRE with cyclical bouts of blood flow restriction-reperfusion, reflecting the RIPC model. A concern about BFRE, however, is potential amplification of the exercise pressor reflex, which could be unsafe in at-risk populations. We hypothesized that cyclical BFRE would elicit greater increases in sympathetic outflow and arterial pressure than conventional exercise (CE) when performed at the same relative intensity. We also assessed the cerebrovascular responses due to potential implementation of BFRE in stroke rehabilitation. Fourteen subjects performed treadmill exercise at 65–70{\%} maximal heart rate with and without intermittent BFR (4 × 5-min intervals of bilateral thigh-cuff pressure followed by 5-min reperfusion periods). Mean arterial pressure (MAP), plasma norepinephrine (NE), and middle and posterior cerebral artery velocities (MCAv and PCAv) were compared between trials. As expected, BFRE elicited higher concentration NE compared with CE (1249 ± 170 vs. 962 ± 114 pg/ml; P = 0.06). Unexpectedly, however, there were no differences in MAP between conditions (overall P = 0.33), and MAP was 4–5 mmHg lower with BFRE versus CE during the reperfusion periods (P ≤ 0.05 for reperfusion periods 3 and 4). There were no differences in MCAv or PCAv between trials (P ≤ 0.22), suggesting equivalent cerebrometabolic demand. The exaggerated sympathoexcitatory response with BFRE was not accompanied by higher MAP, likely because of the cyclical reperfusions. This cyclical BFRE paradigm could be adapted to cardiac or stroke rehabilitation, where exercising patients could benefit from the cardio and cerebro protection associated with RIPC.",
keywords = "Exercise for cardiac rehabilitation, Exercise for stroke rehabilitation, KAATSU, Vascular occlusion training",
author = "Sprick, {Justin D.} and Rickards, {Caroline Alice}",
year = "2017",
month = "11",
day = "1",
doi = "10.1152/ajpregu.00111.2017",
language = "English",
volume = "313",
pages = "R497--R506",
journal = "American Journal of Physiology - Regulatory Integrative and Comparative Physiology",
issn = "0363-6119",
publisher = "American Physiological Society",
number = "5",

}

TY - JOUR

T1 - Combining remote ischemic preconditioning and aerobic exercise

T2 - A novel adaptation of blood flow restriction exercise

AU - Sprick, Justin D.

AU - Rickards, Caroline Alice

PY - 2017/11/1

Y1 - 2017/11/1

N2 - Remote ischemic preconditioning (RIPC) can attenuate tissue damage sustained by ischemia-reperfusion injury. Blood flow restriction exercise (BFRE) restricts blood flow to exercising muscles. We implemented a novel approach to BFRE with cyclical bouts of blood flow restriction-reperfusion, reflecting the RIPC model. A concern about BFRE, however, is potential amplification of the exercise pressor reflex, which could be unsafe in at-risk populations. We hypothesized that cyclical BFRE would elicit greater increases in sympathetic outflow and arterial pressure than conventional exercise (CE) when performed at the same relative intensity. We also assessed the cerebrovascular responses due to potential implementation of BFRE in stroke rehabilitation. Fourteen subjects performed treadmill exercise at 65–70% maximal heart rate with and without intermittent BFR (4 × 5-min intervals of bilateral thigh-cuff pressure followed by 5-min reperfusion periods). Mean arterial pressure (MAP), plasma norepinephrine (NE), and middle and posterior cerebral artery velocities (MCAv and PCAv) were compared between trials. As expected, BFRE elicited higher concentration NE compared with CE (1249 ± 170 vs. 962 ± 114 pg/ml; P = 0.06). Unexpectedly, however, there were no differences in MAP between conditions (overall P = 0.33), and MAP was 4–5 mmHg lower with BFRE versus CE during the reperfusion periods (P ≤ 0.05 for reperfusion periods 3 and 4). There were no differences in MCAv or PCAv between trials (P ≤ 0.22), suggesting equivalent cerebrometabolic demand. The exaggerated sympathoexcitatory response with BFRE was not accompanied by higher MAP, likely because of the cyclical reperfusions. This cyclical BFRE paradigm could be adapted to cardiac or stroke rehabilitation, where exercising patients could benefit from the cardio and cerebro protection associated with RIPC.

AB - Remote ischemic preconditioning (RIPC) can attenuate tissue damage sustained by ischemia-reperfusion injury. Blood flow restriction exercise (BFRE) restricts blood flow to exercising muscles. We implemented a novel approach to BFRE with cyclical bouts of blood flow restriction-reperfusion, reflecting the RIPC model. A concern about BFRE, however, is potential amplification of the exercise pressor reflex, which could be unsafe in at-risk populations. We hypothesized that cyclical BFRE would elicit greater increases in sympathetic outflow and arterial pressure than conventional exercise (CE) when performed at the same relative intensity. We also assessed the cerebrovascular responses due to potential implementation of BFRE in stroke rehabilitation. Fourteen subjects performed treadmill exercise at 65–70% maximal heart rate with and without intermittent BFR (4 × 5-min intervals of bilateral thigh-cuff pressure followed by 5-min reperfusion periods). Mean arterial pressure (MAP), plasma norepinephrine (NE), and middle and posterior cerebral artery velocities (MCAv and PCAv) were compared between trials. As expected, BFRE elicited higher concentration NE compared with CE (1249 ± 170 vs. 962 ± 114 pg/ml; P = 0.06). Unexpectedly, however, there were no differences in MAP between conditions (overall P = 0.33), and MAP was 4–5 mmHg lower with BFRE versus CE during the reperfusion periods (P ≤ 0.05 for reperfusion periods 3 and 4). There were no differences in MCAv or PCAv between trials (P ≤ 0.22), suggesting equivalent cerebrometabolic demand. The exaggerated sympathoexcitatory response with BFRE was not accompanied by higher MAP, likely because of the cyclical reperfusions. This cyclical BFRE paradigm could be adapted to cardiac or stroke rehabilitation, where exercising patients could benefit from the cardio and cerebro protection associated with RIPC.

KW - Exercise for cardiac rehabilitation

KW - Exercise for stroke rehabilitation

KW - KAATSU

KW - Vascular occlusion training

UR - http://www.scopus.com/inward/record.url?scp=85032996099&partnerID=8YFLogxK

U2 - 10.1152/ajpregu.00111.2017

DO - 10.1152/ajpregu.00111.2017

M3 - Article

VL - 313

SP - R497-R506

JO - American Journal of Physiology - Regulatory Integrative and Comparative Physiology

JF - American Journal of Physiology - Regulatory Integrative and Comparative Physiology

SN - 0363-6119

IS - 5

ER -