TY - JOUR
T1 - Characterization of dog peripheral lymph lipoproteins
T2 - The presence of a disc-shaped 'nascent' high density lipoprotein
AU - Sloop, C. H.
AU - Dory, L.
AU - Hamilton, R.
AU - Krause, B. R.
AU - Roheim, P. S.
N1 - Copyright:
Copyright 2012 Elsevier B.V., All rights reserved.
PY - 1983
Y1 - 1983
N2 - The distribution, chemical, and apoprotein composition of plasma and peripheral lymph lipoproteins were compared in control and cholesterol-fed dogs. In both groups of animals, the agarose electrophoretic patterns of plasma and lymph lipoproteins were similar. In hypercholesterolemic dogs, β-very density lipoprotein, β-migrating intermediate density lipoprotein, and HDL(c) were major components both in plasma and lymph, providing evidence for a potential interaction of these atherogenic particles with macrophages and other peripheral cells. The chemical composition and physical appearance of peripheral lymph HDL was markedly different from that of plasma HDL (high density lipoprotein), especially in the cholesterol-fed animals. Lymph HDL had a higher cholesterol to protein ratio and a markedly increased free cholesterol content (free cholesterol to cholesteryl ester ratio of 1.7 as opposed to 0.2 in plasma HDL in cholesterol-fed animals). The phospholipid content of lymph HDL was higher than that of plasma HDL, while the protein content was lower. A significant proportion of lymph HDL obtained from cholesterol-fed dogs was in the form of disc-shaped particles stacked in rouleau structures. Changes in plasma apolipoprotein concentrations due to cholesterol feeding were reflected in peripheral lymph to different degrees, depending largely on the relative size of the lipoproteins containing the individual lipoproteins. A considerable enrichment of lymph HDL with apoE and apoA-IV was observed by both immunochemical and electrophoretic methods. In lymph HDL from control and cholesterol-fed dogs, the apoE/apoA-I and apoA-IV/apoA-I ratio were several-fold elevated, compared to those of plasma HDL. It is concluded, therefore, that during cholesterol feeding a substantial portion of interstitial HDL is assembled de novo in the periphery as a crucial stage of reverse cholesterol transport to the liver. It is likely that further modification occurs upon entry to plasma and exposure to lecithin:cholesterol acyltransferase, possibly leading to generation of HDL(c). Alternatively, these particles may be directly and rapidly removed by the liver.
AB - The distribution, chemical, and apoprotein composition of plasma and peripheral lymph lipoproteins were compared in control and cholesterol-fed dogs. In both groups of animals, the agarose electrophoretic patterns of plasma and lymph lipoproteins were similar. In hypercholesterolemic dogs, β-very density lipoprotein, β-migrating intermediate density lipoprotein, and HDL(c) were major components both in plasma and lymph, providing evidence for a potential interaction of these atherogenic particles with macrophages and other peripheral cells. The chemical composition and physical appearance of peripheral lymph HDL was markedly different from that of plasma HDL (high density lipoprotein), especially in the cholesterol-fed animals. Lymph HDL had a higher cholesterol to protein ratio and a markedly increased free cholesterol content (free cholesterol to cholesteryl ester ratio of 1.7 as opposed to 0.2 in plasma HDL in cholesterol-fed animals). The phospholipid content of lymph HDL was higher than that of plasma HDL, while the protein content was lower. A significant proportion of lymph HDL obtained from cholesterol-fed dogs was in the form of disc-shaped particles stacked in rouleau structures. Changes in plasma apolipoprotein concentrations due to cholesterol feeding were reflected in peripheral lymph to different degrees, depending largely on the relative size of the lipoproteins containing the individual lipoproteins. A considerable enrichment of lymph HDL with apoE and apoA-IV was observed by both immunochemical and electrophoretic methods. In lymph HDL from control and cholesterol-fed dogs, the apoE/apoA-I and apoA-IV/apoA-I ratio were several-fold elevated, compared to those of plasma HDL. It is concluded, therefore, that during cholesterol feeding a substantial portion of interstitial HDL is assembled de novo in the periphery as a crucial stage of reverse cholesterol transport to the liver. It is likely that further modification occurs upon entry to plasma and exposure to lecithin:cholesterol acyltransferase, possibly leading to generation of HDL(c). Alternatively, these particles may be directly and rapidly removed by the liver.
UR - http://www.scopus.com/inward/record.url?scp=0021052102&partnerID=8YFLogxK
M3 - Article
C2 - 6655363
AN - SCOPUS:0021052102
SN - 0022-2275
VL - 24
SP - 1429
EP - 1440
JO - Journal of Lipid Research
JF - Journal of Lipid Research
IS - 11
ER -