Cell-cell coupling between CO2-excited neurons in the dorsal medulla oblongata

Ren-Qi Huang, J. S. Erlichman, J. B. Dean

Research output: Contribution to journalArticleResearchpeer-review

61 Citations (Scopus)

Abstract

Anatomically coupled neurons (17 of 137) and non-coupled neurons (120 of 137), in and near the nucleus tractus solitarius and dorsal motor nucleus (i.e. solitary complex), were studied by rapid perforated patch recording in slices (rat, 150-350 μm thick, postnatal day 0-21) before, during and after exposure to hypercapnic acidosis. Anatomical coupling refers to the intercellular transfer of Lucifer Yellow and Biocytin into adjoining neurons, presumably via gap junctions [see Dean et al. (1997) Neuroscience 80, 21- 40]. Eighty-six per cent of the anatomically coupled neurons (12 of 14) were depolarized by hypercapnic acidosis, a response referred to as CO2 excitation or CO2 chemosensitivity. In all, 28% (12 of 43) of the CO2- excited neurons were anatomically coupled to at least one other neuron. None (0 of 39) of the CO2-inhibited neurons were anatomically coupled, and only 4% (two of 46) of the CO2-insensitive neurons were anatomically coupled. Increasing the fractional concentration of CO2 from five to 10 and 15% in constant bicarbonate (26 mM) decreased intracellular pH (control 7.3-7.4, 22- 25°C) by ~ 1.0 and 1.5 pH units, respectively, as measured using the pH- sensitive fluorescent dye, 2',7'-bis (2-carboxyethyl)-5,6-carboxyfluorescein. Nine of the anatomically coupled neurons (six CO2-excited, one CO2- insensitive and two unidentified) exhibited spontaneous electrotonic postsynaptic potential-like activity, suggesting that they were also electrotonically coupled. During hypercapnic acidosis, the amplitudes of electrotonic postsynaptic potentials were unchanged, concomitant with small changes in input resistance. The frequency of electrotonic postsynaptic potentials increased during hypercapnic acidosis in many anatomically coupled neurons (eight of nine), indicating that both neurons of the coupled pair were stimulated. Cell-cell coupling occurred preferentially in and between CO2-excited neurons of the solitary complex. Further, CO2-excited neurons were not electrotonically uncoupled during intracellular acidosis, in contrast to the effect that decreased intracellular pH has on many other types of coupled cells. It was not determined whether anatomical coupling was affected by hypercapnic acidosis since dye mixture was always administered under normocapnic conditions. The high correlation between anatomical coupling, electrotonic coupling activity and CO2-induced depolarization suggests that cell-cell coupling is an important electroanatomical feature in CO2-excited neurons of the solitary complex. CO2-excited neurons have been hypothesized to function in central chemoreception for the cardiorespiratory control systems, suggesting that cell-cell coupling may contribute in part to central chemoreception of CO2 and H+.

Original languageEnglish
Pages (from-to)41-57
Number of pages17
JournalNeuroscience
Volume80
Issue number1
DOIs
StatePublished - 25 Jun 1997

Fingerprint

Medulla Oblongata
Neurons
Acidosis
Synaptic Potentials
Solitary Nucleus
Miniature Postsynaptic Potentials
Gap Junctions
Neurosciences
Bicarbonates
Fluorescent Dyes

Keywords

  • Central chemoreceptors
  • Dorsal motor nucleus
  • Electrotonic coupling
  • Gap junction
  • Intracellular pH
  • Nucleus tractus solitarius

Cite this

Huang, Ren-Qi ; Erlichman, J. S. ; Dean, J. B. / Cell-cell coupling between CO2-excited neurons in the dorsal medulla oblongata. In: Neuroscience. 1997 ; Vol. 80, No. 1. pp. 41-57.
@article{04892852f1fc480d82d29c8d01dfffed,
title = "Cell-cell coupling between CO2-excited neurons in the dorsal medulla oblongata",
abstract = "Anatomically coupled neurons (17 of 137) and non-coupled neurons (120 of 137), in and near the nucleus tractus solitarius and dorsal motor nucleus (i.e. solitary complex), were studied by rapid perforated patch recording in slices (rat, 150-350 μm thick, postnatal day 0-21) before, during and after exposure to hypercapnic acidosis. Anatomical coupling refers to the intercellular transfer of Lucifer Yellow and Biocytin into adjoining neurons, presumably via gap junctions [see Dean et al. (1997) Neuroscience 80, 21- 40]. Eighty-six per cent of the anatomically coupled neurons (12 of 14) were depolarized by hypercapnic acidosis, a response referred to as CO2 excitation or CO2 chemosensitivity. In all, 28{\%} (12 of 43) of the CO2- excited neurons were anatomically coupled to at least one other neuron. None (0 of 39) of the CO2-inhibited neurons were anatomically coupled, and only 4{\%} (two of 46) of the CO2-insensitive neurons were anatomically coupled. Increasing the fractional concentration of CO2 from five to 10 and 15{\%} in constant bicarbonate (26 mM) decreased intracellular pH (control 7.3-7.4, 22- 25°C) by ~ 1.0 and 1.5 pH units, respectively, as measured using the pH- sensitive fluorescent dye, 2',7'-bis (2-carboxyethyl)-5,6-carboxyfluorescein. Nine of the anatomically coupled neurons (six CO2-excited, one CO2- insensitive and two unidentified) exhibited spontaneous electrotonic postsynaptic potential-like activity, suggesting that they were also electrotonically coupled. During hypercapnic acidosis, the amplitudes of electrotonic postsynaptic potentials were unchanged, concomitant with small changes in input resistance. The frequency of electrotonic postsynaptic potentials increased during hypercapnic acidosis in many anatomically coupled neurons (eight of nine), indicating that both neurons of the coupled pair were stimulated. Cell-cell coupling occurred preferentially in and between CO2-excited neurons of the solitary complex. Further, CO2-excited neurons were not electrotonically uncoupled during intracellular acidosis, in contrast to the effect that decreased intracellular pH has on many other types of coupled cells. It was not determined whether anatomical coupling was affected by hypercapnic acidosis since dye mixture was always administered under normocapnic conditions. The high correlation between anatomical coupling, electrotonic coupling activity and CO2-induced depolarization suggests that cell-cell coupling is an important electroanatomical feature in CO2-excited neurons of the solitary complex. CO2-excited neurons have been hypothesized to function in central chemoreception for the cardiorespiratory control systems, suggesting that cell-cell coupling may contribute in part to central chemoreception of CO2 and H+.",
keywords = "Central chemoreceptors, Dorsal motor nucleus, Electrotonic coupling, Gap junction, Intracellular pH, Nucleus tractus solitarius",
author = "Ren-Qi Huang and Erlichman, {J. S.} and Dean, {J. B.}",
year = "1997",
month = "6",
day = "25",
doi = "10.1016/S0306-4522(97)00017-1",
language = "English",
volume = "80",
pages = "41--57",
journal = "Neuroscience",
issn = "0306-4522",
publisher = "Elsevier Ltd",
number = "1",

}

Cell-cell coupling between CO2-excited neurons in the dorsal medulla oblongata. / Huang, Ren-Qi; Erlichman, J. S.; Dean, J. B.

In: Neuroscience, Vol. 80, No. 1, 25.06.1997, p. 41-57.

Research output: Contribution to journalArticleResearchpeer-review

TY - JOUR

T1 - Cell-cell coupling between CO2-excited neurons in the dorsal medulla oblongata

AU - Huang, Ren-Qi

AU - Erlichman, J. S.

AU - Dean, J. B.

PY - 1997/6/25

Y1 - 1997/6/25

N2 - Anatomically coupled neurons (17 of 137) and non-coupled neurons (120 of 137), in and near the nucleus tractus solitarius and dorsal motor nucleus (i.e. solitary complex), were studied by rapid perforated patch recording in slices (rat, 150-350 μm thick, postnatal day 0-21) before, during and after exposure to hypercapnic acidosis. Anatomical coupling refers to the intercellular transfer of Lucifer Yellow and Biocytin into adjoining neurons, presumably via gap junctions [see Dean et al. (1997) Neuroscience 80, 21- 40]. Eighty-six per cent of the anatomically coupled neurons (12 of 14) were depolarized by hypercapnic acidosis, a response referred to as CO2 excitation or CO2 chemosensitivity. In all, 28% (12 of 43) of the CO2- excited neurons were anatomically coupled to at least one other neuron. None (0 of 39) of the CO2-inhibited neurons were anatomically coupled, and only 4% (two of 46) of the CO2-insensitive neurons were anatomically coupled. Increasing the fractional concentration of CO2 from five to 10 and 15% in constant bicarbonate (26 mM) decreased intracellular pH (control 7.3-7.4, 22- 25°C) by ~ 1.0 and 1.5 pH units, respectively, as measured using the pH- sensitive fluorescent dye, 2',7'-bis (2-carboxyethyl)-5,6-carboxyfluorescein. Nine of the anatomically coupled neurons (six CO2-excited, one CO2- insensitive and two unidentified) exhibited spontaneous electrotonic postsynaptic potential-like activity, suggesting that they were also electrotonically coupled. During hypercapnic acidosis, the amplitudes of electrotonic postsynaptic potentials were unchanged, concomitant with small changes in input resistance. The frequency of electrotonic postsynaptic potentials increased during hypercapnic acidosis in many anatomically coupled neurons (eight of nine), indicating that both neurons of the coupled pair were stimulated. Cell-cell coupling occurred preferentially in and between CO2-excited neurons of the solitary complex. Further, CO2-excited neurons were not electrotonically uncoupled during intracellular acidosis, in contrast to the effect that decreased intracellular pH has on many other types of coupled cells. It was not determined whether anatomical coupling was affected by hypercapnic acidosis since dye mixture was always administered under normocapnic conditions. The high correlation between anatomical coupling, electrotonic coupling activity and CO2-induced depolarization suggests that cell-cell coupling is an important electroanatomical feature in CO2-excited neurons of the solitary complex. CO2-excited neurons have been hypothesized to function in central chemoreception for the cardiorespiratory control systems, suggesting that cell-cell coupling may contribute in part to central chemoreception of CO2 and H+.

AB - Anatomically coupled neurons (17 of 137) and non-coupled neurons (120 of 137), in and near the nucleus tractus solitarius and dorsal motor nucleus (i.e. solitary complex), were studied by rapid perforated patch recording in slices (rat, 150-350 μm thick, postnatal day 0-21) before, during and after exposure to hypercapnic acidosis. Anatomical coupling refers to the intercellular transfer of Lucifer Yellow and Biocytin into adjoining neurons, presumably via gap junctions [see Dean et al. (1997) Neuroscience 80, 21- 40]. Eighty-six per cent of the anatomically coupled neurons (12 of 14) were depolarized by hypercapnic acidosis, a response referred to as CO2 excitation or CO2 chemosensitivity. In all, 28% (12 of 43) of the CO2- excited neurons were anatomically coupled to at least one other neuron. None (0 of 39) of the CO2-inhibited neurons were anatomically coupled, and only 4% (two of 46) of the CO2-insensitive neurons were anatomically coupled. Increasing the fractional concentration of CO2 from five to 10 and 15% in constant bicarbonate (26 mM) decreased intracellular pH (control 7.3-7.4, 22- 25°C) by ~ 1.0 and 1.5 pH units, respectively, as measured using the pH- sensitive fluorescent dye, 2',7'-bis (2-carboxyethyl)-5,6-carboxyfluorescein. Nine of the anatomically coupled neurons (six CO2-excited, one CO2- insensitive and two unidentified) exhibited spontaneous electrotonic postsynaptic potential-like activity, suggesting that they were also electrotonically coupled. During hypercapnic acidosis, the amplitudes of electrotonic postsynaptic potentials were unchanged, concomitant with small changes in input resistance. The frequency of electrotonic postsynaptic potentials increased during hypercapnic acidosis in many anatomically coupled neurons (eight of nine), indicating that both neurons of the coupled pair were stimulated. Cell-cell coupling occurred preferentially in and between CO2-excited neurons of the solitary complex. Further, CO2-excited neurons were not electrotonically uncoupled during intracellular acidosis, in contrast to the effect that decreased intracellular pH has on many other types of coupled cells. It was not determined whether anatomical coupling was affected by hypercapnic acidosis since dye mixture was always administered under normocapnic conditions. The high correlation between anatomical coupling, electrotonic coupling activity and CO2-induced depolarization suggests that cell-cell coupling is an important electroanatomical feature in CO2-excited neurons of the solitary complex. CO2-excited neurons have been hypothesized to function in central chemoreception for the cardiorespiratory control systems, suggesting that cell-cell coupling may contribute in part to central chemoreception of CO2 and H+.

KW - Central chemoreceptors

KW - Dorsal motor nucleus

KW - Electrotonic coupling

KW - Gap junction

KW - Intracellular pH

KW - Nucleus tractus solitarius

UR - http://www.scopus.com/inward/record.url?scp=0030798433&partnerID=8YFLogxK

U2 - 10.1016/S0306-4522(97)00017-1

DO - 10.1016/S0306-4522(97)00017-1

M3 - Article

VL - 80

SP - 41

EP - 57

JO - Neuroscience

JF - Neuroscience

SN - 0306-4522

IS - 1

ER -