Abstract
Several chemical delivery systems (CDS) were synthesized for the cholinesterase inhibitor 9-amino-l,2,3,4-tetrahydroacridine (THA). The derivatives prepared were substituted with a 1,4-dihydropyridine ⇌ pyridinium salt redox system at the amino functionality. These compounds were synthesized by acylation of the 9 amino group of THA with nicotinic anhydride under forced conditions, followed by a selective N-alkylation of the pyridine ring and regioselective reduction of the resulting quaternary salts. Lipophilicity parameters indicated increased lipophilic indices for various CDS's compared to the THA. Oxidation studies showed that dihydronicotinamides readily converted to the quaternary salt, both chemically and enzymatically. The transport forms of THA were also shown not to interact with acetylcholinesterase in vivo. In vivo distribution studies in the rat indicated that high and sustained levels of the pyridinium quaternary ion derivative were present in the central nervous system (CNS). In addition, THA was produced in the CNS from the quaternary salt precursor in low concentrations, indicating a slow but sustained release. The CDS for THA were found to be less acutely toxic than THA.
Original language | English |
---|---|
Pages (from-to) | 658-664 |
Number of pages | 7 |
Journal | Pharmaceutical Research: An Official Journal of the American Association of Pharmaceutical Scientists |
Volume | 7 |
Issue number | 6 |
DOIs | |
State | Published - Jun 1990 |
Keywords
- Alzheimer's disease
- chemical delivery system
- tetrahydroacridine