Anterior chamber perfusion versus posterior chamber perfusion does not influence measurement of aqueous outflow facility in living mice by constant flow infusion

Navita N. Lopez, Gaurang C. Patel, Urmimala Raychaudhuri, Subhash Aryal, Tien N. Phan, Abbot Clark, John Cameron Millar

Research output: Contribution to journalArticleResearchpeer-review

1 Citation (Scopus)

Abstract

Mice are now routinely utilized in studies of aqueous humor outflow dynamics. In particular, conventional aqueous outflow facility (C) is routinely measured via perfusion of the aqueous chamber by a number of laboratories. However, in mouse eyes perfused ex-vivo, values for C are variable depending upon whether the perfusate is introduced into the posterior chamber (PC) versus the anterior chamber (AC). Perfusion via the AC leads to posterior bowing of the iris, and traction on the iris root/scleral spur, which may increase C. Perfusion via the PC does not yield this effect. But the equivalent situation in living mice has not been investigated. We sought to determine whether AC versus PC perfusion of the living mouse eye may lead to different values for C. All experiments were conducted in C57BL/6J mice (all ♀) between the ages of 20 and 30 weeks. Mice were divided into groups of 3–4 animals each. In all groups, both eyes were perfused. C was measured in groups 1 and 2 by constant flow infusion (from a 50 μL microsyringe) via needle placement in the AC, and in the PC, respectively. To investigate the effect of ciliary muscle (CM) tone on C, groups 3 and 4 were perfused live via the AC or PC with tropicamide (muscarinic receptor antagonist) added to the perfusate at a concentration of 100 μM. To investigate immediate effect of euthanasia, groups 5 and 6 were perfused 15–30 min after death via the AC or PC. To investigate the effect of CM tone on C immediately following euthanasia, groups 7 and 8 were perfused 15–30 min after death via the AC or PC with tropicamide added to the perfusate at a concentration of 100 μM. C in Groups 1 (AC perfusion) and 2 (PC perfusion) was computed to be 19.5 ± 0.8 versus 21.0 ± 2.1 nL/min/mmHg, respectively (mean ± SEM, p > 0.4, not significantly different). In live animals in which tropicamide was present in the perfusate, C in Group 3 (AC perfusion) was significantly greater than C in Group 4 (PC perfusion) (22.0 ± 4.0 versus 14.0 ± 2.0 nL/min/mmHg, respectively, p = 0.0021). In animals immediately following death, C in groups 5 (AC perfusion) and 6 (PC perfusion) was computed to be 21.2 ± 2.0 versus 22.8 ± 1.4 nL/min/mmHg, respectively (mean ± SEM, p = 0.1196, not significantly different). In dead animals in which tropicamide was present in the perfusate, C in group 7 (AC perfusion) was greater than C in group 8 (PC perfusion) (20.6 ± 1.4 versus 14.2 ± 2.6 nL/min/mmHg, respectively, p < 0.0001). C in eyes in situ in living mice or euthanized animals within 15–30 min post mortem is not significantly different when measured via AC perfusion or PC perfusion. In eyes of live or freshly euthanized mice, C is greater when measured via AC versus PC perfusion when tropicamide (a mydriatic and cycloplegic agent) is present in the perfusate.

Original languageEnglish
Pages (from-to)95-108
Number of pages14
JournalExperimental eye research
Volume164
DOIs
StatePublished - 1 Nov 2017

Fingerprint

Anterior Chamber
Perfusion
Tropicamide
Mydriatics
Euthanasia
Iris
Muscles
Muscarinic Antagonists
Aqueous Humor
Traction
Muscarinic Receptors
Inbred C57BL Mouse
Needles

Keywords

  • Anterior chamber
  • Aqueous outflow facility
  • Constant flow infusion
  • In vivo
  • Mouse
  • Posterior chamber
  • Tropicamide

Cite this

@article{5cbcc15f08a640a0ae9139673584d444,
title = "Anterior chamber perfusion versus posterior chamber perfusion does not influence measurement of aqueous outflow facility in living mice by constant flow infusion",
abstract = "Mice are now routinely utilized in studies of aqueous humor outflow dynamics. In particular, conventional aqueous outflow facility (C) is routinely measured via perfusion of the aqueous chamber by a number of laboratories. However, in mouse eyes perfused ex-vivo, values for C are variable depending upon whether the perfusate is introduced into the posterior chamber (PC) versus the anterior chamber (AC). Perfusion via the AC leads to posterior bowing of the iris, and traction on the iris root/scleral spur, which may increase C. Perfusion via the PC does not yield this effect. But the equivalent situation in living mice has not been investigated. We sought to determine whether AC versus PC perfusion of the living mouse eye may lead to different values for C. All experiments were conducted in C57BL/6J mice (all ♀) between the ages of 20 and 30 weeks. Mice were divided into groups of 3–4 animals each. In all groups, both eyes were perfused. C was measured in groups 1 and 2 by constant flow infusion (from a 50 μL microsyringe) via needle placement in the AC, and in the PC, respectively. To investigate the effect of ciliary muscle (CM) tone on C, groups 3 and 4 were perfused live via the AC or PC with tropicamide (muscarinic receptor antagonist) added to the perfusate at a concentration of 100 μM. To investigate immediate effect of euthanasia, groups 5 and 6 were perfused 15–30 min after death via the AC or PC. To investigate the effect of CM tone on C immediately following euthanasia, groups 7 and 8 were perfused 15–30 min after death via the AC or PC with tropicamide added to the perfusate at a concentration of 100 μM. C in Groups 1 (AC perfusion) and 2 (PC perfusion) was computed to be 19.5 ± 0.8 versus 21.0 ± 2.1 nL/min/mmHg, respectively (mean ± SEM, p > 0.4, not significantly different). In live animals in which tropicamide was present in the perfusate, C in Group 3 (AC perfusion) was significantly greater than C in Group 4 (PC perfusion) (22.0 ± 4.0 versus 14.0 ± 2.0 nL/min/mmHg, respectively, p = 0.0021). In animals immediately following death, C in groups 5 (AC perfusion) and 6 (PC perfusion) was computed to be 21.2 ± 2.0 versus 22.8 ± 1.4 nL/min/mmHg, respectively (mean ± SEM, p = 0.1196, not significantly different). In dead animals in which tropicamide was present in the perfusate, C in group 7 (AC perfusion) was greater than C in group 8 (PC perfusion) (20.6 ± 1.4 versus 14.2 ± 2.6 nL/min/mmHg, respectively, p < 0.0001). C in eyes in situ in living mice or euthanized animals within 15–30 min post mortem is not significantly different when measured via AC perfusion or PC perfusion. In eyes of live or freshly euthanized mice, C is greater when measured via AC versus PC perfusion when tropicamide (a mydriatic and cycloplegic agent) is present in the perfusate.",
keywords = "Anterior chamber, Aqueous outflow facility, Constant flow infusion, In vivo, Mouse, Posterior chamber, Tropicamide",
author = "Lopez, {Navita N.} and Patel, {Gaurang C.} and Urmimala Raychaudhuri and Subhash Aryal and Phan, {Tien N.} and Abbot Clark and Millar, {John Cameron}",
year = "2017",
month = "11",
day = "1",
doi = "10.1016/j.exer.2017.08.011",
language = "English",
volume = "164",
pages = "95--108",
journal = "Experimental Eye Research",
issn = "0014-4835",
publisher = "Academic Press Inc.",

}

Anterior chamber perfusion versus posterior chamber perfusion does not influence measurement of aqueous outflow facility in living mice by constant flow infusion. / Lopez, Navita N.; Patel, Gaurang C.; Raychaudhuri, Urmimala; Aryal, Subhash; Phan, Tien N.; Clark, Abbot; Millar, John Cameron.

In: Experimental eye research, Vol. 164, 01.11.2017, p. 95-108.

Research output: Contribution to journalArticleResearchpeer-review

TY - JOUR

T1 - Anterior chamber perfusion versus posterior chamber perfusion does not influence measurement of aqueous outflow facility in living mice by constant flow infusion

AU - Lopez, Navita N.

AU - Patel, Gaurang C.

AU - Raychaudhuri, Urmimala

AU - Aryal, Subhash

AU - Phan, Tien N.

AU - Clark, Abbot

AU - Millar, John Cameron

PY - 2017/11/1

Y1 - 2017/11/1

N2 - Mice are now routinely utilized in studies of aqueous humor outflow dynamics. In particular, conventional aqueous outflow facility (C) is routinely measured via perfusion of the aqueous chamber by a number of laboratories. However, in mouse eyes perfused ex-vivo, values for C are variable depending upon whether the perfusate is introduced into the posterior chamber (PC) versus the anterior chamber (AC). Perfusion via the AC leads to posterior bowing of the iris, and traction on the iris root/scleral spur, which may increase C. Perfusion via the PC does not yield this effect. But the equivalent situation in living mice has not been investigated. We sought to determine whether AC versus PC perfusion of the living mouse eye may lead to different values for C. All experiments were conducted in C57BL/6J mice (all ♀) between the ages of 20 and 30 weeks. Mice were divided into groups of 3–4 animals each. In all groups, both eyes were perfused. C was measured in groups 1 and 2 by constant flow infusion (from a 50 μL microsyringe) via needle placement in the AC, and in the PC, respectively. To investigate the effect of ciliary muscle (CM) tone on C, groups 3 and 4 were perfused live via the AC or PC with tropicamide (muscarinic receptor antagonist) added to the perfusate at a concentration of 100 μM. To investigate immediate effect of euthanasia, groups 5 and 6 were perfused 15–30 min after death via the AC or PC. To investigate the effect of CM tone on C immediately following euthanasia, groups 7 and 8 were perfused 15–30 min after death via the AC or PC with tropicamide added to the perfusate at a concentration of 100 μM. C in Groups 1 (AC perfusion) and 2 (PC perfusion) was computed to be 19.5 ± 0.8 versus 21.0 ± 2.1 nL/min/mmHg, respectively (mean ± SEM, p > 0.4, not significantly different). In live animals in which tropicamide was present in the perfusate, C in Group 3 (AC perfusion) was significantly greater than C in Group 4 (PC perfusion) (22.0 ± 4.0 versus 14.0 ± 2.0 nL/min/mmHg, respectively, p = 0.0021). In animals immediately following death, C in groups 5 (AC perfusion) and 6 (PC perfusion) was computed to be 21.2 ± 2.0 versus 22.8 ± 1.4 nL/min/mmHg, respectively (mean ± SEM, p = 0.1196, not significantly different). In dead animals in which tropicamide was present in the perfusate, C in group 7 (AC perfusion) was greater than C in group 8 (PC perfusion) (20.6 ± 1.4 versus 14.2 ± 2.6 nL/min/mmHg, respectively, p < 0.0001). C in eyes in situ in living mice or euthanized animals within 15–30 min post mortem is not significantly different when measured via AC perfusion or PC perfusion. In eyes of live or freshly euthanized mice, C is greater when measured via AC versus PC perfusion when tropicamide (a mydriatic and cycloplegic agent) is present in the perfusate.

AB - Mice are now routinely utilized in studies of aqueous humor outflow dynamics. In particular, conventional aqueous outflow facility (C) is routinely measured via perfusion of the aqueous chamber by a number of laboratories. However, in mouse eyes perfused ex-vivo, values for C are variable depending upon whether the perfusate is introduced into the posterior chamber (PC) versus the anterior chamber (AC). Perfusion via the AC leads to posterior bowing of the iris, and traction on the iris root/scleral spur, which may increase C. Perfusion via the PC does not yield this effect. But the equivalent situation in living mice has not been investigated. We sought to determine whether AC versus PC perfusion of the living mouse eye may lead to different values for C. All experiments were conducted in C57BL/6J mice (all ♀) between the ages of 20 and 30 weeks. Mice were divided into groups of 3–4 animals each. In all groups, both eyes were perfused. C was measured in groups 1 and 2 by constant flow infusion (from a 50 μL microsyringe) via needle placement in the AC, and in the PC, respectively. To investigate the effect of ciliary muscle (CM) tone on C, groups 3 and 4 were perfused live via the AC or PC with tropicamide (muscarinic receptor antagonist) added to the perfusate at a concentration of 100 μM. To investigate immediate effect of euthanasia, groups 5 and 6 were perfused 15–30 min after death via the AC or PC. To investigate the effect of CM tone on C immediately following euthanasia, groups 7 and 8 were perfused 15–30 min after death via the AC or PC with tropicamide added to the perfusate at a concentration of 100 μM. C in Groups 1 (AC perfusion) and 2 (PC perfusion) was computed to be 19.5 ± 0.8 versus 21.0 ± 2.1 nL/min/mmHg, respectively (mean ± SEM, p > 0.4, not significantly different). In live animals in which tropicamide was present in the perfusate, C in Group 3 (AC perfusion) was significantly greater than C in Group 4 (PC perfusion) (22.0 ± 4.0 versus 14.0 ± 2.0 nL/min/mmHg, respectively, p = 0.0021). In animals immediately following death, C in groups 5 (AC perfusion) and 6 (PC perfusion) was computed to be 21.2 ± 2.0 versus 22.8 ± 1.4 nL/min/mmHg, respectively (mean ± SEM, p = 0.1196, not significantly different). In dead animals in which tropicamide was present in the perfusate, C in group 7 (AC perfusion) was greater than C in group 8 (PC perfusion) (20.6 ± 1.4 versus 14.2 ± 2.6 nL/min/mmHg, respectively, p < 0.0001). C in eyes in situ in living mice or euthanized animals within 15–30 min post mortem is not significantly different when measured via AC perfusion or PC perfusion. In eyes of live or freshly euthanized mice, C is greater when measured via AC versus PC perfusion when tropicamide (a mydriatic and cycloplegic agent) is present in the perfusate.

KW - Anterior chamber

KW - Aqueous outflow facility

KW - Constant flow infusion

KW - In vivo

KW - Mouse

KW - Posterior chamber

KW - Tropicamide

UR - http://www.scopus.com/inward/record.url?scp=85027960945&partnerID=8YFLogxK

U2 - 10.1016/j.exer.2017.08.011

DO - 10.1016/j.exer.2017.08.011

M3 - Article

VL - 164

SP - 95

EP - 108

JO - Experimental Eye Research

JF - Experimental Eye Research

SN - 0014-4835

ER -