An epidemic model for non-first-order transmission kinetics

Eun Young Mun, Feng Geng

Research output: Contribution to journalArticlepeer-review

2 Scopus citations


Compartmental models in epidemiology characterize the spread of an infectious disease by formulating ordinary differential equations to quantify the rate of disease progression through subpopulations defined by the Susceptible-Infectious-Removed (SIR) scheme. The classic rate law central to the SIR compartmental models assumes that the rate of transmission is first order regarding the infectious agent. The current study demonstrates that this assumption does not always hold and provides a theoretical rationale for a more general rate law, inspired by mixed-order chemical reaction kinetics, leading to a modified mathematical model for non-first-order kinetics. Using observed data from 127 countries during the initial phase of the COVID-19 pandemic, we demonstrated that the modified epidemic model is more realistic than the classic, first-order-kinetics based model. We discuss two coefficients associated with the modified epidemic model: transmission rate constant k and transmission reaction order n. While k finds utility in evaluating the effectiveness of control measures due to its responsiveness to external factors, n is more closely related to the intrinsic properties of the epidemic agent, including reproductive ability. The rate law for the modified compartmental SIR model is generally applicable to mixed-kinetics disease transmission with heterogeneous transmission mechanisms. By analyzing early-stage epidemic data, this modified epidemic model may be instrumental in providing timely insight into a new epidemic and developing control measures at the beginning of an outbreak.

Original languageEnglish
Article numbere0247512
JournalPLoS ONE
Issue number3 March
StatePublished - Mar 2021


Dive into the research topics of 'An epidemic model for non-first-order transmission kinetics'. Together they form a unique fingerprint.

Cite this