TY - JOUR

T1 - A meta-analysis of quantitative EEG power associated with attention-deficit hyperactivity disorder

AU - Snyder, Steven M.

AU - Hall, James R.

PY - 2006/10

Y1 - 2006/10

N2 - A meta-analysis was performed on quantitative EEG (QEEG) studies that evaluated attention-deficit hyperactivity disorder (ADHD) using the criteria of the DSM-IV (Diagnostic and Statistical Manual of Mental Disorders, 4 edition). The nine eligible studies (N = 1498) observed QEEG traits of a theta power increase and a beta power decrease, summarized in the theta/beta ratio with a pooled effect size of 3.08 (95% confidence interval, 2.90, 3.26) for ADHD versus controls (normal children, adolescents, and adults). By statistical extrapolation, an effect size of 3.08 predicts a sensitivity and specificity of 94%, which is similar to previous results 86% to 90% sensitivity and 94% to 98% specificity. It is important to note that the controlled group studies were often with retrospectively set limits, and that in practice the sensitivity and specificity results would likely be more modest. The literature search also uncovered 32 pre-DSM-IV studies of ADHD and EEG power, and 29 of the 32 studies demonstrated results consistent with the meta-analysis. The meta-analytic results are also supported by the observation that the theta/beta ratio trait follows age-related changes in ADHD symptom presentation (Pearson correlation coefficient, 0.996, P = 0.004). In conclusion, this meta-analysis supports that a theta/beta ratio increase is a commonly observed trait in ADHD relative to normal controls. Because it is known that the theta/beta ratio trait may arise with other conditions, a prospective study covering differential diagnosis would be required to determine generalizability to clinical applications. Standardization of the QEEG technique is also needed, specifically with control of mental state, drowsiness, and medication.

AB - A meta-analysis was performed on quantitative EEG (QEEG) studies that evaluated attention-deficit hyperactivity disorder (ADHD) using the criteria of the DSM-IV (Diagnostic and Statistical Manual of Mental Disorders, 4 edition). The nine eligible studies (N = 1498) observed QEEG traits of a theta power increase and a beta power decrease, summarized in the theta/beta ratio with a pooled effect size of 3.08 (95% confidence interval, 2.90, 3.26) for ADHD versus controls (normal children, adolescents, and adults). By statistical extrapolation, an effect size of 3.08 predicts a sensitivity and specificity of 94%, which is similar to previous results 86% to 90% sensitivity and 94% to 98% specificity. It is important to note that the controlled group studies were often with retrospectively set limits, and that in practice the sensitivity and specificity results would likely be more modest. The literature search also uncovered 32 pre-DSM-IV studies of ADHD and EEG power, and 29 of the 32 studies demonstrated results consistent with the meta-analysis. The meta-analytic results are also supported by the observation that the theta/beta ratio trait follows age-related changes in ADHD symptom presentation (Pearson correlation coefficient, 0.996, P = 0.004). In conclusion, this meta-analysis supports that a theta/beta ratio increase is a commonly observed trait in ADHD relative to normal controls. Because it is known that the theta/beta ratio trait may arise with other conditions, a prospective study covering differential diagnosis would be required to determine generalizability to clinical applications. Standardization of the QEEG technique is also needed, specifically with control of mental state, drowsiness, and medication.

KW - Attention deficit/hyperactivity disorder

KW - Electroencephalography

KW - Meta-analysis

KW - Rating scales

KW - Sensitivity

UR - http://www.scopus.com/inward/record.url?scp=33749420610&partnerID=8YFLogxK

U2 - 10.1097/01.wnp.0000221363.12503.78

DO - 10.1097/01.wnp.0000221363.12503.78

M3 - Article

C2 - 17016156

AN - SCOPUS:33749420610

VL - 23

SP - 441

EP - 456

JO - Journal of Clinical Neurophysiology

JF - Journal of Clinical Neurophysiology

SN - 0736-0258

IS - 5

ER -