TY - JOUR
T1 - A high throughput fluorescence polarization assay for inhibitors of the GoLoco motif/G-alpha interaction
AU - Kimple, Adam J.
AU - Yasgar, Adam
AU - Hughes, Mark
AU - Jadhav, Ajit
AU - Willard, Francis S.
AU - Muller, Robin E.
AU - Austin, Christopher P.
AU - Inglese, James
AU - Ibeanu, Gordon C.
AU - Siderovski, David P.
AU - Simeonov, Anton
PY - 2008/6
Y1 - 2008/6
N2 - The GoLoco motif is a short Gα-binding polypeptide sequence. It is often found in proteins that regulate cell-surface receptor signaling, such as RGS12, as well as in proteins that regulate mitotic spindle orientation and force generation during cell division, such as GPSM2/LGN. Here, we describe a high throughput fluorescence polarization (FP) assay using fluorophore-labeled GoLoco motif peptides for identifying inhibitors of the GoLoco motif interaction with the G-protein alpha subunit Gαi1. The assay exhibits considerable stability over time and is tolerant to DMSO up to 5%. The Z′-factors for robustness of the GPSM2 and RGS12 GoLoco motif assays in a 96-well plate format were determined to be 0.81 and 0.84, respectively; the latter assay was run in a 384-well plate format and produced a Z′-factor of 0.80. To determine the screening factor window (Z-factor) of the RGS12 GoLoco motif screen using a small molecule library, the NCI Diversity Set was screened. The Z-factor was determined to be 0.66, suggesting that this FP assay would perform well when developed for 1,536-well format and scaled up to larger libraries. We then miniaturized to a 4 μL final volume a pair of FP assays utilizing fluorescein- (green) and rhodamine- (red) labeled RGS12 GoLoco motif peptides. In a fully-automated run, the Sigma-Aldrich LOPAC1280 collection was screened three times with every library compound being tested over a range of concentrations following the quantitative high throughput screening (qHTS) paradigm; excellent assay performance was noted with average Z-factors of 0.84 and 0.66 for the green- and red-label assays, respectively.
AB - The GoLoco motif is a short Gα-binding polypeptide sequence. It is often found in proteins that regulate cell-surface receptor signaling, such as RGS12, as well as in proteins that regulate mitotic spindle orientation and force generation during cell division, such as GPSM2/LGN. Here, we describe a high throughput fluorescence polarization (FP) assay using fluorophore-labeled GoLoco motif peptides for identifying inhibitors of the GoLoco motif interaction with the G-protein alpha subunit Gαi1. The assay exhibits considerable stability over time and is tolerant to DMSO up to 5%. The Z′-factors for robustness of the GPSM2 and RGS12 GoLoco motif assays in a 96-well plate format were determined to be 0.81 and 0.84, respectively; the latter assay was run in a 384-well plate format and produced a Z′-factor of 0.80. To determine the screening factor window (Z-factor) of the RGS12 GoLoco motif screen using a small molecule library, the NCI Diversity Set was screened. The Z-factor was determined to be 0.66, suggesting that this FP assay would perform well when developed for 1,536-well format and scaled up to larger libraries. We then miniaturized to a 4 μL final volume a pair of FP assays utilizing fluorescein- (green) and rhodamine- (red) labeled RGS12 GoLoco motif peptides. In a fully-automated run, the Sigma-Aldrich LOPAC1280 collection was screened three times with every library compound being tested over a range of concentrations following the quantitative high throughput screening (qHTS) paradigm; excellent assay performance was noted with average Z-factors of 0.84 and 0.66 for the green- and red-label assays, respectively.
KW - Fluorescence anisotropy
KW - Fluorescence polarization
KW - GoLoco motif
KW - Heterotrimeric G-proteins
KW - High throughput screening
UR - http://www.scopus.com/inward/record.url?scp=45149084496&partnerID=8YFLogxK
U2 - 10.2174/138620708784534770
DO - 10.2174/138620708784534770
M3 - Review article
C2 - 18537560
AN - SCOPUS:45149084496
SN - 1386-2073
VL - 11
SP - 396
EP - 409
JO - Combinatorial Chemistry and High Throughput Screening
JF - Combinatorial Chemistry and High Throughput Screening
IS - 5
ER -