Androgen Modulation of Neurodegeneration in Dopamine Neurons

  • Cunningham, Rebecca (PI)

Project Details


[unreadable] DESCRIPTION (provided by applicant): PROBLEM: Parkinson's disease (PD) has a higher prevalence in the human male population. PD is characterized by motor dysfunction, rigidity, and bradykinesia. Current research suggests that gender plays a role in this condition, since males have a greater incidence of PD. It is believed that the underlying mechanism of PD involves oxidative stress leading to cellular apoptosis. In many peripheral cells and some neuronal cells, androgens have been shown to increase apoptosis. PURPOSE: The goal of these studies is to determine androgen's effects on dopaminergic cells following oxidative stress by using both in vitro and in vivo methods. The central hypothesis of this proposal is that androgens increase cellular vulnerability to oxidative stress-induced neurotoxicity in dopaminergic neurons. RESEARCH QUESTIONS: The first specific aim of this proposal is to determine the apoptotic signaling pathways activated by androgens in dopaminergic N27 cells following oxidative stress (hydrogen peroxide). The second specific aim is designed to evaluate the effects of androgens on estrogen-mediated neuroprotection in dopaminergic N27 neurons following oxidative stress. These aims will be accomplished through in vitro molecular studies with and without the presence of astroglia cells and the androgen receptor antagonist, hydroxyflutamide. Lastly, the third specific aim will characterize the in vivo effects of androgens on tyrosine hydroxylase expression, neuronal death, and motor behavior in aged male rats exposed to 6-OHDA, which induces oxidative stress and apoptosis in the substantia nigra and striatum. In vivo hormone treatment groups will consist of gonadectomized aged males, gonadally intact aged males, and gonadectomized aged males plus replacement androgen (testosterone or dihydrotestosterone) for either a chronic (3 months) or acute (1 week) treatment time length prior to 6-OHDA lesion. Immunocytochemical and behavioral techniques will be used to accomplish this aim. OUTCOMES: This study will provide basic knowledge on how androgens modulate dopaminergic cellular vulnerability to oxidative stress. Ultimately, this knowledge can be used to provide a foundation to understanding the mechanisms underlying sex differences in neurodegenerative disorders. [unreadable] [unreadable]
Effective start/end date1/03/0828/02/11


  • National Institute of Neurological Disorders and Stroke


Explore the research topics touched on by this project. These labels are generated based on the underlying awards/grants. Together they form a unique fingerprint.